#### WINNING TEAMS: Mathematics Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1



## Sierra Leone WINNING TEAMS: Mathematics

# **Topic Concept Charts**

Primary 6 (Term 1) to support JSS1 Term 1

Leh Wi Lan September 2022

(Amended March 2023)

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 1: Numbers, place value and counting (Term 1 M-06-001 to M-06-012)

| Check that you know how  | Do you understand these words?        | 1 |                                     |
|--------------------------|---------------------------------------|---|-------------------------------------|
| to read, write and count | Place value, digit, millions, hundred |   | Refer to Primary Maths Class 6 page |
| numbers up to ten        | •                                     |   | 1 – 12.                             |
| thousands.               | thousands, ten thousands, thousands,  |   | 1 - 12.                             |
| li lousarius.            | hundreds. tens. units.                |   |                                     |

## CONCEPTS:

\* Every digit in a number has a place value that depends on the position of the digit in the number. In the decimal number system, the place values are multiples of ten.  $1 \times 10 = 10$ ;  $10 \times 10 = 100$ ;  $100 \times 10 = 1000$ ;  $1000 \times 10 = 10,000$ ;  $10,000 \times 10 = 100,000$ ;  $100,000 \times 10 = 1,000,000$ 

#### Example 1



Example 2

#### Example 2:

This number is forty two million, eighty six thousand, five hundred and one. Write it as 42,086,501.

#### Example 1:

The number 1,365,029 is made up of one million, 3 hundred thousands, 6 ten thousands, 5 thousands, no hundreds, 2 tens and 9 units.

\* We read the numbers from left to right, grouping the digits in threes from the right.

- \* We read this number as one million, three hundred and sixty five thousand and twenty nine.
- \* The digit 6 represents 60 000. The digit 0 represents no hundreds in the number.
- \* The place value of the digit 3 is Hundred Thousands, so the value of 3 is 300 000.
- \* The place value of the digit 5 is Thousands, so the value of 5 is five thousand.

#### Counting in multiples of ten

#### Example 3:

\* Two million, five hundred and twenty-four thousand, six hundred and three.

\* Read the number using the commas to tell you where the separators between hundreds, thousands and millions are.

\* Write the number as 2,524,603.

\* Listen for the words millions, hundred thousands, hundreds to indicate how to write the number down.

\* We can count in tens and multiples of ten, starting from any number. For example, using 1,365,029 as our starting number, we can count in 10s forwards to get 1,365,029; 1,365,039; 1,365,049; 1,365,059; ... The number in the tens column is increasing by 1 each time. we can count in 100s backwards to get 1,365,029; 1,364,949; 1,364,849; 1,364,749; ... The number in the hundreds column is decreasing by 1 each time. Note that 0 in the 100s became 9 and we subtracted 1 from the thousands column.

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### **Topic 1: Numbers, place value and counting Exercise**

- 1. Write these numbers into the place value table provided:
  - a. Two million, three hundred and fifty thousand, seven hundred and one.
  - b. Thirteen million, sixty eight thousand, four hundred and ninety seven.

|    | Ten Millions | Millions | Hundred Thousands | Ten Thousands | Thousands | Hundreds | Tens | Units |   |
|----|--------------|----------|-------------------|---------------|-----------|----------|------|-------|---|
| a. |              |          |                   |               |           |          |      |       |   |
| b. |              |          |                   |               |           |          |      |       |   |
|    |              |          |                   |               |           |          |      |       | _ |

- 2. What is the place value and the value of the digit 6 in each of the following numbers?
  - a. **6**2,107,325
  - b. 4,**6**24,588
  - c. 1,287,1**6**2
  - d. 1,0**6**5,322
  - e. 1,87**6**,210
- 3. What digit is in the thousands place for each number in question 2?
- 4. How many hundreds are there in the number 965,012?
- 5. Write down each of these numbers using digits in a place value table.
  - a. Three hundred and fifty-two thousand, two hundred and ninety-three
  - b. Nine hundred and twenty thousand, one hundred and eighty-two
  - c. Eight hundred ninety-nine thousand, nine hundred and ninety-seven
  - d. Five hundred and four thousand and forty-three

|                                                                | Ten <u>Millions</u>                                        | Millions                                                                                 | Hundred Thousand                                      | Ten Thousands      | Thousands    | Hundreds           | Tens | Units |
|----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|--------------|--------------------|------|-------|
| a.                                                             |                                                            | 2                                                                                        | 3                                                     | 5                  | 0            | 7                  | 0    | 1     |
| b.                                                             | 1                                                          | 3                                                                                        | 0                                                     | 6                  | 8            | 4                  | 9    | 7     |
| d. p<br>valu<br>e. p<br>valu<br>3a.<br>4. 1<br>5a.<br>b.<br>c. | blac<br>ue (<br>blac<br>ue (<br>7<br>The<br>35<br>92<br>89 | ce va<br>ce va<br>60,0<br>ce va<br>6,00<br>b. 4<br>re al<br>2,29<br>0,18<br>9,99<br>4,04 | alue<br>00<br>alue<br>0<br>c.<br>re no<br>3<br>2<br>7 | 10 th<br>thou<br>7 | sand<br>d. t | ands<br>ls;<br>5 ( |      |       |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

| <b>Check that you</b> know your times tables up to 12 × 12.                                        | Do you understand these words?<br>Even and odd numbers, factors,<br>multiples, prime and composite numbers;<br>prime factors; common factors.                                                                       |                                                                                         |                                                                                      | Refer to Primary Maths Class 6<br>Term 1                              |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                    |                                                                                                                                                                                                                     | CONCEPTS:                                                                               |                                                                                      |                                                                       |
| Any number that has a whol<br>* <b>Odd numbers</b> are any numbers<br>* Adding two even numbers ha | has a 2, 4, 6, 8 or 0 in the ones place, it is <b>ev</b><br>e answer and no remainder when it is divided<br>bers that are not even. They have a 1, 3, 5, 7 of<br>as an even answer (e.g. $16 + 22 = 48$ ). Adding   | by 2, is an even number.<br>or 9 in the ones place. For ex<br>two odd numbers has an ev |                                                                                      |                                                                       |
| * Prime and composite num<br>Composite numbers are num<br>Prime numbers are divisible              | n odd number has an odd answer (e.g. 18 + 1<br>bers<br>Ibers that are divisible by more than 2 number<br>by exactly 2 numbers, 1 and itself (e.g. 13 can<br>site, except for the number 2. 2 is the <i>only</i> eve | s (e.g. 6 can be divided by 1<br>only be divided by 1 and 13                            | ,                                                                                    |                                                                       |
|                                                                                                    | s exactly into another number, then it is a fact<br>Factors of a number are always smaller than c                                                                                                                   | v                                                                                       |                                                                                      | o 4 and 3 are both factors of 12.<br>12 and 6 are both factors of 72. |
| * Prime factors: Factors of a                                                                      | number that are prime numbers.                                                                                                                                                                                      |                                                                                         | <u>Example</u> : The prime fac<br>Other factors of 12 are a                          |                                                                       |
| •                                                                                                  | Itiplied by another number, the answer is a mung. Multiples are always bigger than or equal                                                                                                                         | •                                                                                       | Example: $8 \times 7 = 56$ , so                                                      | o 56 is a multiple of 7 and of 8.                                     |
| All the numbers in the times ta                                                                    | bles of a number are multiples of the number.                                                                                                                                                                       |                                                                                         | <u>Example</u> : 3, 6, 9, 12,                                                        | are multiples of 3.                                                   |
| * Common factors of two nur                                                                        | nbers                                                                                                                                                                                                               |                                                                                         | <u>Example</u> : 3 and 6 are b<br>The factors of 12 are 1<br>The factors of 18 are 1 |                                                                       |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## **Topic 2: Factors and multiples**

| 1. W   | ithout calculating    | the answers, sa      | y if the an | swers will be odd  | or even.          |
|--------|-----------------------|----------------------|-------------|--------------------|-------------------|
|        | a. 28 + 34            | b. 11 + 99           | c. 85 +     | 36                 |                   |
|        | d. 14 + 78            | e. 39 + 14           | f. 13 + (   | 65                 |                   |
| 2. W   | ork out if the follow | ving numbers are     | composite i | numbers or prime r | numbers.          |
|        | a. 8                  | b. 17                | c. 68       | d. 37              |                   |
|        | e. 39                 | f. 53                | g. 91       | h. 101             |                   |
| 3.     | List the prime        | numbers between      | 10 and 30.  |                    |                   |
|        |                       | ctor of all even nur | nbers?      |                    |                   |
|        | t all the factors of  |                      |             |                    |                   |
| 6. Lis | t the multiples       | a. of 5 from 40      | to 65       | b. of 8 between 2  | 10 and 40.        |
| 7.     | a la 5 a factor       | of 78? How do yo     | u know?     |                    |                   |
| 7.     |                       | iple of 4? How do yo |             |                    |                   |
|        |                       | ese numbers are fa   | •           | 2 123              | 4, 5, 6, 7, 8, 9. |
|        |                       |                      |             | s of 36? 1, 2, 3,  |                   |
| 8.     |                       | me factors of 60.    |             | .,_,,,             | ., e, e, ., e, e. |
|        | -                     | me factors of 43.    |             |                    |                   |
|        | -                     | ne factors of 15.    |             |                    |                   |
|        | d. List the prin      | ne factors of 56.    |             |                    |                   |
| 9.     | Find the comn         | non factors of 18 a  | nd 48.      |                    |                   |
| 10.    | List three com        | mon multiples of 3   | and 4.      |                    |                   |
|        |                       | common multiples     |             | a. 12 and 9        | b. 25 and 10      |
|        |                       | umbers: 1; 8; 16; 3  | 32; 64.     |                    |                   |
| -      | Which numbers a       |                      |             |                    |                   |
|        |                       | re multiples of 32?  | )           |                    |                   |
| C.     | Which numbers a       | re prime?            |             |                    |                   |

| Check your answers:                   |
|---------------------------------------|
| 1a. even b. even c. odd               |
| d. even e. odd f. even                |
| 2a. composite b. prime                |
| c. composite d. prime                 |
| e. composite f. prime                 |
| g. composite h. prime                 |
| 3. 11, 13, 17, 19, 23, 29.            |
| 4. 2 because 2 divides into all even  |
| numbers.                              |
| 5. Factors of 32: 1, 2, 4, 8, 16, 32  |
| 6a. 40, 45, 50, 55, 60, 65.           |
| b. 16, 24, 32                         |
| 7a. 5 is not a factor of 78 because   |
| 78 ÷ 5 has a remainder.               |
| b. 28 is a multiple of 4 because      |
| 7 × 4 = 28                            |
| c. 1, 2, 3, 4, 6, 9.                  |
| d. 2 and 3.                           |
| 8a. Prime factors of 60: 2, 3 and 5   |
| b. 43 is the only prime factor of 43. |
| c. 3 and 5                            |
| d. 2 and 7                            |
| 9. 1, 2, 3 and 6                      |
| 10. 12, 24, 36 (there are others)     |
| 11a. 36, 72, 108. b. 50, 100, 150.    |
| 12a. 1, 8, 16 and 32                  |
| b. 32, 64 c. None of them.            |
|                                       |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 3: Squares, cubes and triangular numbers (Term 2 M-06-116 to M-06-120)

| Check that you know:<br>* that we can find a pattern<br>(or rule) in a sequence of<br>numbers<br>* how to multiply a number<br>by itself e.g. 4 × 4 = 16                                                                                                                    | <b>Do you understand these words?</b><br>Sequence of numbers; square of a<br>number; cube of a number; triangular<br>number                                                                                                                                                                                                              |                                 |                                                                                                                                                                                                                                                                                                                                      | Refer to Primary<br>Maths Class 6, Term<br>2.                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                          | CONCEPTS:                       |                                                                                                                                                                                                                                                                                                                                      |                                                                                                |
| <ul> <li>* 3 squared means 3 times by</li> <li>* The sequence of the first ten<br/><u>Example</u>: Use squared number</li> <li>* When we <b>cube</b> a number, we</li> <li>* The sequence of the first ten<br/><u>Example</u>:<br/>Use cubed numbers to help you</li> </ul> | er that is a square of another number<br>itself (3 × 3) = 9<br>square numbers in our counting system:<br>rs to complete this sequence: 2; 8; 18; 32;<br>e multiply it by itself three times. For example<br>cubed numbers in our counting system:<br>ou complete this pattern: 3, 10, 29,,<br><b>cubed numbers plus 2</b> each time: 1 + | ;;<br>, 2 × 2 × 2 = 8<br>,      | 9 is a <b>square number</b> because 9 =<br>1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 1<br>2 × 1 × 1 = 2; 2 × 2 × 2 = 8; 2 × 3 × 3<br>2 × 5 × 5 = <b>50</b> ; 2 × 6 × 6 = <b>72</b> ; 2 × 7<br>8 is a <b>cubed number</b> because 8 = 2<br>1, 8, 27, 64, 125, 216, 343, 512, 729<br>64 + 2 = <b>66</b> ; 125 + 2 = <b>127</b> ; 216 + 2 = | 21, 144<br>3 = 18; 2 × 4 × 4 = 32;<br>× 7 = <b>98</b> .<br>2 × 2 × 2<br>9, 1000, 1,331, 1,728. |
| * Triangular numbers are nur                                                                                                                                                                                                                                                | nbers that can be represented by dots in a tri                                                                                                                                                                                                                                                                                           | iangle form. Triangular numbers | s give you the sequence 1, 3, 6, 10, 15                                                                                                                                                                                                                                                                                              | , and so on.                                                                                   |
| 1 3 6 10<br>Add another row to the bottom<br>Example: Use triangular numb                                                                                                                                                                                                   | 15 21<br>of the triangle for each new number.<br>ers to complete this sequence: 3; 9; 18;                                                                                                                                                                                                                                                | _;;                             | × 10 = <b>30</b> ; 3 × 15 = <b>45</b> ; 3 × 21 = <b>63</b> .                                                                                                                                                                                                                                                                         |                                                                                                |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 3: Squares, cubes and triangular numbers

## Exercise

2.

3.

4.

5.

6.

7. 8. 9.

| Fill in the missing numbers in this sequence of squared numbers:        , 4, 9, 16,, 36,, 81,         Fill in the missing numbers in this sequence of cubed numbers:        ,, 27, 64,, 216,, 729, 1000,,         Fill in the missing numbers in this sequence of triangular numbers: | <ol> <li>1. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.</li> <li>2. 1, 8, 27, 64, 125, 216, 343, 512, 729,<br/>1000, 1,331, 1,728.</li> <li>3. 1, 3, 6, 10, 15, 21, 28, 36, 45.</li> </ol> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 3, 6,, 21,, 45.                                                                                                                                                                                                                                                                    | 4. $2 = 1 + 1^2$ ; $1 + 2^2 = 5$ ; $1 + 3^2 = 10$ ;<br>$1 + 4^2 = 17$ ; $1 + 5^2 = 26$ ; $1 + 6^2 = 37$ .                                                                            |
| A sequence is made of <b>1 plus squared numbers</b> . The first number is 2. Find the next five numbers in the sequence.                                                                                                                                                              | Sequence is 1, 5, 10, 17, 26, 37.<br>5. $1^3 - 1 = 0.2^3 - 1 = 7$ ; $3^3 - 1 = 26$ ;                                                                                                 |
| A sequence is made of cubed numbers subtract one. The first number is 0. Find the next five numbers in the sequence.                                                                                                                                                                  | $4^{3} - 1 = 63; 5^{3} - 1 = 124; 6^{3} - 1 = 215$<br>Sequence is 0, 7, 26, 63, 124, 215.                                                                                            |
| A sequence is made of 2 times triangular numbers. The first number is 2. Find the next five numbers in the sequence.                                                                                                                                                                  | 6. $1 \times 2 = 2$ . $(1 + 2) \times 2 = 6$ ;<br>$(1 + 2 + 3) \times 2 = 12$ ;                                                                                                      |
| Complete the sequence of squared numbers up to 169: 25, 36, 49,<br>List the cubed numbers from 4 cubed to 9 cubed.                                                                                                                                                                    | $(1 + 2 + 3 + 4) \times 2 = 20;$<br>$(1 + 2 + 3 + 4 + 5) \times 2 = 30;$                                                                                                             |
| Describe each sequence of numbers below. First decide if the sequence uses squared numbers or cubed numbers.<br>a. 8, 18, 32, 50, 72, 98, 128, 162, 200, 242.                                                                                                                         | (1 + 2 + 3 + 4 + 5 + 6) × 2 = 42.<br>Sequence is 2, 6, 12, 20, 30, 42.                                                                                                               |
| b. 12, 19, 28, 39, 52.                                                                                                                                                                                                                                                                | <b>7.</b> 25; 36; 49; <b>64; 81; 100; 121; 144; 169</b> .<br>8. 64; 125; 216, 343, 512, 729.                                                                                         |

C.  $\frac{1}{3}, \frac{4}{3}, 3, \frac{16}{3}, \frac{25}{3}$ 

10. Complete the sequence using triangular numbers. 2, 4, 7, 11, \_\_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_.

10. Pattern is triangular number plus 1.

9. a. 2 × squared numbers from 2 to 11.

b. squared numbers plus 3 from 3 to 7. c.  $\frac{1}{3}$  × squared numbers from 1 to 5.

2, 4, 7, 11, **16**, **22**, **29**.

0

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 4: Decimal numbers, decimal fractions (Term 2 M-06-086 to M-06-090)

| Check that you can: find equivalent fractions                                                                                                                                                                                                                                                                                                                        | <b>Do you understand these words?</b><br>Equivalent; denominator; digits, place<br>value                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                  | Refer to Primary Maths<br>Class 6, Term 2. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Example: Equivalent fractions<br>To get a denominator of 10, m<br>To get a denominator of 100, m<br>To get a denominator of 1000,<br><b>Converting fractions to decin</b><br>* To change a fraction to a decine<br>$\frac{13}{100}$ is 13 hundredths. So us<br>* To change a decimal to a fraction<br>Example: Convert 0.214 to a fraction<br>2 is in the tenths pla | , we must multiply or divide both the nume<br>to $\frac{2}{5}$<br>ultiply the numerator and the denominator<br>nultiply the numerator and the denominator<br>multiply the numerator and the denomina<br><b>mal numbers</b><br>simal, first find an equivalent fraction with a<br>ing the place value table, 13 hundredths is<br>ction, count the number of place values af | or by 20.<br>$\frac{2}{5} \times \frac{20}{20} = \frac{40}{100}$<br>a denominator of 10, 100 or 1000.<br>s 0.13. $\frac{13}{10}$ = thirteen tenths = 1 and three tenths = 1.3<br>fter the point. |                                            |
| 4 is in the thousandt<br>Ordering and comparing                                                                                                                                                                                                                                                                                                                      | hs place value, (three decimal places).                                                                                                                                                                                                                                                                                                                                    | $\frac{214}{1000} = 0.214$                                                                                                                                                                       |                                            |
| Example: Put these numbers in                                                                                                                                                                                                                                                                                                                                        | n order from smallest to largest:<br>cimals or all to thousandths to compare.                                                                                                                                                                                                                                                                                              | 0.24, $\frac{13}{100}$ , 0.031; $\frac{5}{10}$<br>0.24, 0.13, 0.031, 0.5<br>in order: 0.031, 0.13, 0.24, 0.5                                                                                     |                                            |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### **Topic 4: Decimal numbers, decimal fractions**

a.  $\frac{3}{10}$ ; 0.311  $\frac{3}{8}$ ; 0.32;  $\frac{1}{4}$ 

b.  $\frac{3}{4}$ ; 0.09  $\frac{7}{8}$ ; 0.99;  $\frac{9}{10}$ 

c. 0.65;  $\frac{66}{100}$ ; 0.56  $\frac{3}{5}$ ; 0.606

#### Exercise

| 1. | Find equivalent fractions with denominationa. $\frac{2}{4}$ b. $\frac{3}{5}$                             |                                                   | nd 1000 for each of d. $\frac{3}{4}$ | •                    |
|----|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|----------------------|
| 2. | Convert the following decimal number<br>a. 0.85 b. 0.825                                                 | rs to fractions.<br>c. 1.25                       | d. 0.005                             | e. 0.05              |
| 3. | Convert the following fractions to deci<br>a. $\frac{3}{4}$ b. $\frac{12}{10}$                           |                                                   | d. $\frac{12}{100}$                  | e. $\frac{12}{1000}$ |
| 4. | Compare these numbers. Which is big<br>a. 0.35 or 0.305                                                  | gger?<br>b. $\frac{13}{1000}$ or $\frac{13}{100}$ | c. 0.35                              | or $\frac{7}{20}$    |
| 5. | Put these fractions in order from the b<br>a. $\frac{5}{10}$ ; 0.82 $\frac{4}{5}$ ; 0.825; $\frac{5}{8}$ | biggest to the smalle                             | est:                                 |                      |
|    | b. $\frac{2}{5}$ ; 0.2 $\frac{3}{8}$ ; 0.45; $\frac{1}{2}$                                               |                                                   |                                      |                      |
| 6. | Put these fractions in order from smal                                                                   | llest to biggest:                                 |                                      |                      |

| 10 100 1000                                                                       |  |
|-----------------------------------------------------------------------------------|--|
| 2a. $\frac{85}{100}$ b. $\frac{825}{1000}$ c. $\frac{125}{100} = 1\frac{25}{100}$ |  |
| d. $\frac{5}{1000}$ e. $\frac{5}{100}$                                            |  |
| 3a. 0.75 b. 1.2 c. 0.8                                                            |  |
| d. 0.12 e. 0.012                                                                  |  |
| 4a. 0.350 > 0.305                                                                 |  |
| b. $\frac{13}{1000} < \frac{13}{100}$                                             |  |
| c. $0.35 = \frac{35}{100} = \frac{7}{20}$                                         |  |
| 5a. Convert all to decimals:                                                      |  |
| 0.500; 0.820; 0.800; 0.825; 0.625 →                                               |  |
| 0.825; 0.820; 0.800; 0.625; 0.500 →                                               |  |
| $0.825; 0.82; \frac{4}{5}; \frac{5}{8}; \frac{5}{10}$                             |  |
| b. $\frac{1}{2}$ ; 0.45; $\frac{2}{5}$ ; $\frac{3}{8}$ ; 0.2                      |  |
| 6a. $\frac{3}{10} = 0.300; \frac{3}{8} = 0.375; \frac{1}{4} = 0.25$               |  |
| Order: $\frac{1}{4}$ ; $\frac{3}{10}$ ; 0.311; 0.32; $\frac{3}{8}$                |  |
| b. $\frac{3}{4} = 0.75$ $\frac{7}{8} = 0.875$ $\frac{9}{10} = 0.9$                |  |
| Order: 0.09; $\frac{3}{4}$ ; $\frac{7}{8}$ ; $\frac{9}{10}$ ; 0.99                |  |
| c. $\frac{66}{100} = 0.660  \frac{3}{5} = 0.600$                                  |  |
| Order: 0.56; $\frac{3}{5}$ ; 0.606; 0.65; $\frac{66}{100}$ ;                      |  |
|                                                                                   |  |

Check your answers:

1a.  $\frac{5}{10}$   $\frac{50}{100}$   $\frac{500}{1000}$ 

e.  $\frac{8}{10} \frac{80}{100} \frac{800}{1000}$ 

b.  $\frac{6}{10}$   $\frac{60}{100}$   $\frac{600}{1000}$ c.  $\frac{25}{100}$   $\frac{250}{1000}$  d.  $\frac{75}{100}$   $\frac{750}{1000}$ 

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 5: Rounding off whole numbers and decimal fractions (Term 1 M-06-013 to M-06-015)

| <b>Check that you can:</b><br>Round off whole numbers<br>using a number line                                                                                                                                                                  | <b>Do you understand these words?</b><br>Rounding (also called rounding off);<br>To the nearest 10, 100, 1000 or<br>10,000; decimal places                                                                                                  |                                                                                                                                                                                                                                                        | Refer to Primary Maths<br>Class 6, Term 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| approximate quantities. On a r                                                                                                                                                                                                                | number line, it is easy to see that 8 is close                                                                                                                                                                                              | <b>CONCEPTS</b> :<br>bers are close enough to the given number. It helps us with estimation<br>er to 10 than to 0, so 8 is <b>rounded up</b> to 10; 14 is closer to 10 than to<br>umbers ending in 5 are rounded up, so 15 is <b>rounded up</b> to 20. |                                           |
| + + + + + +                                                                                                                                                                                                                                   | + + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                           |
| 0 5                                                                                                                                                                                                                                           | <b>8</b> 10 <b>14 15 1</b> 7                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                     |                                           |
| nearest ten, we look at the 3. 5<br>5, we <b>round up</b> to 20. The pro<br>* <u>Example</u> :<br>456, <u>82</u> 9 to the nearest hundr<br>45 <u>6</u> , <b>8</b> 29 to the nearest thousa<br>4 <u>5</u> <b>6</b> ,829 to the nearest ten the | Since 3 is smaller than 5, we <b>round down</b><br>acess for rounding off bigger numbers to the<br>ed is 456,800 (2 in the tens place value is<br>and is 457,000 (8 in the hundreds place va<br>ousand is 460,000 (6 in the thousands place | alue is rounded up)                                                                                                                                                                                                                                    |                                           |
| Rounding off decimal number                                                                                                                                                                                                                   | ers                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                           |
| * On a number line, we can se                                                                                                                                                                                                                 | e that 4.7 rounded to the nearest whole n                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        | <b>4.7</b> 5.0                            |
| Example: 7.536 round<br>- the nearest whole n                                                                                                                                                                                                 |                                                                                                                                                                                                                                             | re rounding to. The digits 1, 2, 3, 4 round down; the digits 5, 6, 7, 8, 9                                                                                                                                                                             |                                           |
| two dooimal places                                                                                                                                                                                                                            | ic 7.54 hoosuco <b>6</b> rounde un                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                           |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 5: Rounding off whole numbers and decimal fractions

| Exer | cise    |                                          |           |                                        | Check your answers:                    |
|------|---------|------------------------------------------|-----------|----------------------------------------|----------------------------------------|
| 1    | . Rour  | nd off 36,953 to                         |           |                                        | 1a. 36,950 b. 37,000                   |
|      | a. Th   | e nearest ten b. the nearest 100         | c. the    | e nearest 1000 d. the nearest 10,000   | c. 37,000 d. 40,000                    |
| 2.   | -       | id these numbers to the nearest whole nu |           |                                        | 2a. 17 b. 1 c. 2<br>d. 0 e. 101 f. 100 |
|      | a.      | 17.33 b. 0.56                            | C         | c. 2.051                               |                                        |
|      | d.      | 0.082 e. 101.                            | 37        | f. 99.64                               | 3a. 0.18 b. 0.027                      |
| 3.   | Rour    | d these numbers to the number of decim   | al places | shown                                  | c. 0.2 d. 5.706                        |
|      | a.      | 0.184 (to two decimal places)            | b.        | 0.0271 (to three decimal places)       | e. 5.71 f. 5.7                         |
|      | C.      | 0.2071 (to one decimal place)            | d.        | 5.7059 (to three decimal places)       | g. 68.91 h. 68.9                       |
|      | e.      | 5.7059 (to two decimal places)           | f.        | 5.7059 (to one decimal place)          | i. 578.94 j. 578.9                     |
|      | g.      | 68.905 (to two decimal places)           | h.        | 68.905 (to one decimal place)          |                                        |
|      | i.      | 578.9426 (to two decimal places)         | j.        | 578.9426 (to one decimal place)        | 4a. 25 200 b. 50                       |
|      |         |                                          |           |                                        | c. 25 180 d. 48                        |
| 4.   | a.      | Round 25 176 to the nearest 100.         | b.        | Round 47.535 to the nearest 10.        | e. 25 000 f. 47.5                      |
|      | C.      | Round 25 176 to the nearest 10.          | d.        | Round 47.535 to the nearest unit.      | g. 47.54 h. 47.54                      |
|      | e.      | Round 25 176 to the nearest 1000.        | f.        | Round 47.535 to the nearest tenth.     | i. 3 040 j. 986.78                     |
|      | g.      | Round 47.535 to two decimal places.      | h.        | Round 47.535 to the nearest hundredth. |                                        |
| _    | l.<br>_ | Round 3 039 to the nearest 10.           | j.        | Round 986.7828 to two decimal places.  | 5a. 53,709,43                          |
| 5.   |         | nd 53,709,426                            |           |                                        | b. 53,710,000                          |
|      | a.      | To the nearest ten                       | b.        | To the nearest ten thousand.           | c. 53,709,000                          |
|      | C.      | To the nearest thousand                  | d.        | To the nearest million                 | d. 54,000,000                          |
|      | e.      | To the nearest 100 thousand              | f.        | To the nearest ten million             | e. 53,700,000                          |
|      |         |                                          |           |                                        | f. 50,000,000                          |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 6: Number operations on whole numbers and decimal fractions (Term 1 M-06-016 to M-06-040)

| Check that you know: how to add, subtract, multiply and divide with 2-digit numbers                                                                                                                                                                               | Do you understand these<br>words? Multiply, divide, digit,<br>place value, decimal places,<br>millions, ten millions |                                                                                              | Refer to Primary Maths Class 6<br>Term 1.            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|
| * To <b>add or subtract</b> with dec<br>Add numbers up to millions                                                                                                                                                                                                | cimal numbers, use place value cc<br>Subtract numbers up                                                             | CONCEPTS:<br>lumns and keep the decimal point of each nur<br>to millions Add decimal numbers | nber lined up.<br>Subtract decimal numbers           |
|                                                                                                                                                                                                                                                                   | $-\frac{3}{4}, 3 2 6_{x}$ $-\frac{3}{6}, 6 1 9_{y}$ $-\frac{3}{7}, 0 6_{y}$ rs, the answer must have the total       | of the decimal places of the numbers being m                                                 |                                                      |
| $1$ 1       1         3       2       2 $\times$ 5       6         1,       9       3       2        322         1       9       3       2        322         1       6,       1       0       0        322         1       8,       0       3       2        Adv | 2 × 6<br>2 × 50                                                                                                      | Multiplying decimal numbers:<br>$ \begin{array}{ccccccccccccccccccccccccccccccccccc$         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                                                                                                                                                                   | , first multiply by a power of 10 to r<br>÷ 0.03 × 1,000 = 1,671 ÷ 30 = 55.                                          | nake the divisor a whole number. Do the same                                                 |                                                      |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 6: Number operations on whole numbers and decimal fractions

| Do all | calculations without using   | a calculator.             |                       |                |                | Check your | answers:                |                  |
|--------|------------------------------|---------------------------|-----------------------|----------------|----------------|------------|-------------------------|------------------|
| 1.     | Calculate:                   |                           |                       |                |                | 1a. 7.86   | b. 10.1                 | c. 10.129        |
|        | a. 3.03 + 4.83               | b. 3.4 + 6.7              | c. 6.52 + 3.609       | d. 5.34 – 2.19 | e. 9.85 – 4.60 | d. 3.15    | e. 5.25                 | f. 5.4           |
|        | f. 0.08 + 1.50 + 3.82        | g. 0.03 + 2.71 – 1.8      | h. 1 – 0.16           | i. 100 – 2.3   | j. 1.06 + 3.09 | g. 0.94    | h. 0.84                 | i. 97.7          |
|        |                              |                           |                       |                |                | j. 4.15    | 11. 0.04                | 1. 07.1          |
| 2.     | Calculate the following      | whole numbers:            |                       |                |                | J. 4.10    |                         |                  |
|        | a. 43,185 + 22,061           | b. 1,909 – 602            | c. 67 × 29            | d. 10,140 ÷ 15 | e. 901 × 8     | 2a. 65,246 | b. 1,307                |                  |
|        |                              |                           |                       |                |                | c. 1,943   | d. 0,676                | e. 7,208         |
| 3.     | Add or subtract the deci     | mal numbers.              |                       |                |                | 0. 1,940   | u. 0,070                | 6. 7,200         |
|        | a. 106.93 + 19.41            | b. 9.07 + 6.96            | c. 11.3 – 10.9        | 96 d. 20.8     | 8 - 13.07      | 3a. 126.34 | b. 16.03                | c. 0.34          |
|        | e. 180.74 + 29.505           | f. 540.8 – 190            | .063 g. 11.54 + 33    | .52 - 21.9     |                | d. 7.73    | e. 210.245              |                  |
|        |                              |                           |                       |                |                | g. 23.16   | 6. Z10.Z <del>1</del> 0 | 1. 000.101       |
| 4.     | Multiply and divide the c    | lecimal numbers.          |                       |                |                | g. 23.10   |                         |                  |
|        | a. 0.75 × 0.3                | b. 1.96 ÷ 0.2             | c. 3.2 × 0.7          | d. 3.75        | 5 ÷ 0.03       | 4a. 0.225  | b. 9.8                  | c. 2.24          |
|        | e. 0.03 × 3.75               | f. 9.8 ÷ 0.7              | g. 0.42 × 0.2         | h. 1.1         | 43 ÷ 0.003     | d. 125     | e. 0.1125               | 6. 2.24<br>f. 14 |
|        | i. 0.08 × 0.09               | j. 7.2 ÷ 0.9              | k. (0.3) <sup>2</sup> |                |                | g. 0.084   | h. 381                  | i. 0.0072        |
|        |                              | ·                         |                       |                |                | j. 8       | k. 0.09                 | 1. 0.0072        |
| 5.     | You are told $239 \times 12$ | 4 = 29,636. Use this to d | etermine:             |                |                | J. 0       | K. U.U3                 |                  |
|        | a. 2.39 × 1.24 b.            | 23.9 × 0.124 c. 239 >     | < 12.4                |                |                | 5a. 2.9636 | b. 2.9636               | 0 2 062 6        |
|        |                              |                           |                       |                |                | 5a. 2.9050 | D. 2.9030               | c. 2,963.6       |
| 6.     | You are told $203 \times 13$ | 7 = 27,811. Use this to d | etermine:             |                |                | 6a. 278.11 | b. 0.2781               |                  |
|        |                              | 0.203 × 1.37 c. 0.0       |                       |                |                |            |                         | L                |
|        |                              |                           |                       |                |                | c. 0.00278 | 11                      |                  |
|        |                              |                           |                       |                |                |            |                         |                  |
|        |                              |                           |                       |                |                |            |                         |                  |
|        |                              |                           |                       |                |                |            |                         |                  |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 7: Fractions (Term 2 M-06-071 to M-06-075)



Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### **Topic 7: Fractions**



Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 8: Calculations with fractions (Term 2 M-06-076 to M-06-080)

| <b>Check that you can:</b><br>Find equivalent<br>fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Do you understand these<br>words?<br>equivalent, common factor,<br>simplify, inverse, reciprocal                   |                                                                                                                                                                                                                                                                   | Refer to Primary Maths<br>Class 6, Term 2.                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| denominator.<br><u>Example 1</u> : $\frac{1}{2} + \frac{1}{3}$<br>To add $\frac{1}{2}$ and $\frac{1}{3}$ , we need to<br>denominators. $\frac{1}{2} = \frac{3}{6}$ and $\frac{1}{3}$<br><u>Example 2</u> : $3\frac{1}{2} + 4\frac{1}{3}$ may<br>$=\frac{7}{2} + \frac{13}{3}$<br>$=\frac{7}{2} \times \frac{3}{3} + \frac{13}{3} \times \frac{3}{2}$<br>$=\frac{21}{6} + \frac{26}{6} = \frac{47}{6}$<br><b>* Subtracting fractions</b><br><u>Example 3</u> :<br>$\frac{1}{3} - \frac{1}{4}$<br>$=\frac{1}{3} \times \frac{4}{4} - \frac{1}{4} \times \frac{3}{3}$ find | ake improper fractions<br>find equivalent fractions<br>$\frac{2}{2}$ make a common denominator<br>$= 7\frac{5}{6}$ | * Dividing fractions<br>Division is the inverse operation of<br>To divide, convert mixed fractions<br>Then multiply by the reciprocal<br>numerator and denominator).<br>Example 6:<br>$2\frac{5}{9} \div 1\frac{3}{5} = \frac{23}{9} \div \frac{8}{5}$ improper f | enominators.<br>$\times \frac{8}{5} = \frac{184}{45} = 4\frac{4}{45}$ of multiplication.<br>to improper fractions first<br>of the second fraction (flip<br>fractions<br>tion sign and invert second |
| 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mmon denominator of 12<br>btract numerators                                                                        | $=1\frac{43}{72}$ convert an                                                                                                                                                                                                                                      | nswer to a mixed fraction                                                                                                                                                                           |

© Winning Teams 2022

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### **Topic 8: Calculations with fractions**

#### Exercise

1. Calculate and write your answer as a fraction in reduced form:

| a. $\frac{2}{8} + \frac{5}{8}$ | b. $\frac{5}{9} - \frac{2}{9}$ | c. $2\frac{2}{3} + 1\frac{1}{5}$ | d. $3\frac{2}{3} - \frac{1}{3}$ |
|--------------------------------|--------------------------------|----------------------------------|---------------------------------|
| e. $\frac{5}{6} + \frac{3}{4}$ | f. $\frac{2}{9} + \frac{4}{3}$ | g. $\frac{15}{24} - \frac{1}{6}$ | h. $\frac{7}{9} + \frac{5}{18}$ |

- 2. a.  $3\frac{3}{5} 2\frac{1}{6}$  b.  $3\frac{1}{4} 1\frac{1}{3}$  c.  $3\frac{2}{3} \frac{5}{6}$
- 3. Calculate and write your answer as a fraction in reduced form:

| a. $\frac{1}{5} \times \frac{2}{3}$   | b. $\frac{5}{11} \times \frac{33}{45}$ | C. $\frac{20}{21} \times \frac{3}{5}$ |
|---------------------------------------|----------------------------------------|---------------------------------------|
| d. $2\frac{2}{5} \times 2\frac{2}{3}$ | e. $3\frac{1}{5} \times 1\frac{3}{4}$  |                                       |

4. Calculate and write your answer as a fraction in reduced form:

| a. $9 \div \frac{3}{5}$             | b. $5\frac{1}{3} \div \frac{8}{9}$  | C. $\frac{7}{8} \div 3$ |
|-------------------------------------|-------------------------------------|-------------------------|
| d. $2\frac{1}{8} \div 1\frac{1}{4}$ | e. $2\frac{2}{3} \div 1\frac{5}{9}$ |                         |

| Check                               | your answers:                                                                                |
|-------------------------------------|----------------------------------------------------------------------------------------------|
| 1 a.                                | $\frac{7}{8}$ b. $\frac{3}{9}$                                                               |
| C.                                  | $\frac{8}{3} + \frac{6}{5} = \frac{40}{15} + \frac{18}{15} = \frac{58}{15} = 3\frac{13}{15}$ |
| d.                                  | $3\frac{1}{3}$                                                                               |
|                                     | $+\frac{18}{24} = \frac{38}{24} = \frac{19}{12} = 1\frac{7}{12}$                             |
|                                     | $+\frac{12}{9} = \frac{14}{9} = 1\frac{5}{9}$                                                |
|                                     | $-\frac{4}{24} = \frac{11}{24}$                                                              |
| h. $\frac{14}{18}$                  | $\frac{4}{3} + \frac{5}{18} = \frac{19}{18} = 1\frac{1}{18}$                                 |
| 2a. 1 $\frac{3}{5}$                 | $-\frac{1}{6} = 1\frac{18}{30} - \frac{5}{30} = 1\frac{13}{30}$                              |
|                                     | $-\frac{4}{3} = \frac{39}{12} - \frac{16}{12} = \frac{23}{12} = 1\frac{11}{12}$              |
|                                     | $-\frac{5}{6} = \frac{22}{6} - \frac{5}{6} = \frac{17}{6} = 2\frac{5}{6}$                    |
| 3a. $\frac{2}{15}$                  | b. $\frac{1}{3}$ c. $\frac{4}{7}$                                                            |
| -                                   | $\frac{8}{3} = \frac{4}{5} \times \frac{8}{1} = \frac{32}{5} = 6\frac{2}{5}$                 |
| e. $\frac{16}{5}$ >                 | $\frac{7}{4} = \frac{4}{5} \times \frac{7}{1} = \frac{28}{5} = 5\frac{3}{5}$                 |
| 4a. $\frac{9}{1}$ ×                 | $\frac{5}{3} = 15$                                                                           |
| b. $\frac{16}{3} \times$            | $\frac{9}{8} = 6$ c. $\frac{7}{8} \times \frac{1}{3} = \frac{7}{24}$                         |
| d. $\frac{17}{8}$ ×                 | $\frac{4}{5} = \frac{17}{10} = 1\frac{7}{10}$                                                |
| e. $\frac{8}{3} \times \frac{1}{3}$ | $\frac{9}{14} = \frac{24}{14} = \frac{12}{7} = 1\frac{5}{7}$                                 |
|                                     |                                                                                              |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

## Topic 9: Fractions, decimals and percentages (Term 2 M-06-096 to M-06-100)

| <b>Check that you can:</b><br>convert fractions to<br>decimals and decimals to<br>fractions out of 100.                              | <b>Do you understa</b><br>Percentage, decir<br>fraction, denom | nal, long division,                |         |                      |                        |                               | Refer to Primary Maths Class 6,<br>Term 2.                           |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|---------|----------------------|------------------------|-------------------------------|----------------------------------------------------------------------|
|                                                                                                                                      |                                                                |                                    |         | CONCEPTS:            |                        |                               |                                                                      |
| Percentage<br>* 30 per cent means 30 per<br>* To convert a percentage to<br><u>Example</u> : $30\% = \frac{30}{100} = \frac{3}{100}$ | t <b>o a fraction</b> , place                                  | 100                                |         |                      | l simplify if possible | e.                            |                                                                      |
| * To express a percentage as                                                                                                         | a decimal, divide th                                           | e percentage by 1                  | 00 and  | use the place value. | Example:               | 30% =                         | $\frac{30}{100} = 0.30$                                              |
| * To convert a fraction to a p                                                                                                       | ercentage, make an                                             | equivalent fractior                | n out o | 100 and convert.     | Example:               | $\frac{4}{5} = \frac{80}{10}$ | $\frac{1}{200} = 80\%$                                               |
| * To convert a decimal to a pe                                                                                                       | ercentage, first make                                          | e a fraction out of 1              | 00.     |                      | Example:               | $0.3 = \frac{3}{10}$          | $\frac{10}{100} = 80\%$<br>$\frac{100}{100} = \frac{30}{100} = 30\%$ |
| * Sometimes we need to use                                                                                                           | e long division to                                             | convert a <b>fractio</b>           | n to a  | decimal:             |                        |                               |                                                                      |
| Example: $\frac{7}{8}$ is "7 divided                                                                                                 | by 8".                                                         | 0. 8                               | 7       | 5                    |                        |                               |                                                                      |
| Long division gives us a d                                                                                                           | ecimal of 0.875.                                               | 8 7. 0<br>- 6 4<br>- 6<br>- 5<br>- |         | 0<br>0               |                        |                               |                                                                      |

Primary 6 Topic Concept Charts (to support JSS1 pupils) TERM 1

#### Topic 9: Fractions, decimals and percentages

| 1. | Write each of the following pe  | rcentages as a fraction (in s | simplest form) and | l as a decimal:       |
|----|---------------------------------|-------------------------------|--------------------|-----------------------|
|    | a. 3%                           | b. 12%                        | c. 40%             |                       |
|    | d. 35%                          | e. 95%                        | f. 60%             |                       |
|    | g. 45%                          | h. 68%                        | i. 40%             | j. 55%                |
| 2. | Write each of the following de  | cimals as percentages         |                    |                       |
|    | a. 0.07                         | b. 0.09                       | c. 0.61            |                       |
|    | d. 0.37                         | e. 0.29                       | f. 0.08            |                       |
|    | g. 0.35                         | h. 1                          | i. 0.495           | j. 0.085              |
| 3. | Write each of the following fra | ctions as percentages         |                    |                       |
|    | a. ¼                            | b. ½                          | C. ¾               |                       |
|    | d. $\frac{1}{25}$               | $e.\frac{2}{25}$              | f. $\frac{3}{20}$  |                       |
|    | $9.\frac{12}{50}$               | h. $\frac{7}{20}$             | i. 3/5             | j. <del>9</del><br>25 |

| Check your answers:<br>1a. $\frac{3}{100}$ and 0.03<br>c. $\frac{40}{100} = \frac{2}{5}$ and 0.4<br>e. $\frac{95}{100}$ and 0.95 | b. $\frac{12}{100} = \frac{3}{25}$ and 0.12<br>d. $\frac{35}{100} = \frac{7}{20}$ and 0.35<br>f. $\frac{60}{100} = \frac{3}{5}$ and 0.6 |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  | h. $\frac{68}{100} = \frac{17}{25}$ and 0.68<br>j. $\frac{55}{100} = \frac{11}{20}$ and 0.55                                            |
| 2a. 7%<br>c. 61%<br>e. 29%<br>g. 35%<br>i. 49.5%                                                                                 | b. 9%<br>d. 37%<br>f. 8%<br>h. 100%<br>j. 8.5%                                                                                          |
| 3a. 25%<br>c. 75%<br>e. 8%<br>g. 24%<br>i. 60%                                                                                   | b. 50%<br>d. 4%<br>f. 15%<br>h. 35%<br>j. 36%                                                                                           |
|                                                                                                                                  |                                                                                                                                         |