Sierra Leone
 WINNING TEAMS: Mathematics

 Questions for teams

 Questions for teams}

Primary 6 (Term 2) to support JSS1 Term 2

Leh Wi Lan

Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB1	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB5
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Decimals to Fractions
Using the long division method, convert the fraction $\frac{4}{5}$ into a decimal number up to the thousandths place.	Convert the decimal numbers below into simple fractions: a) 0.250 b) 0.78
Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB2	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB6
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Decimals to Fractions
Using the long division method; convert the fraction $\frac{19}{25}$ into a decimal number up to the thousandths place.	Convert the decimal numbers below into improper fractions: a) 0.66 b) 0.88
Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB3	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB7
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Decimals to Fractions
Using long division, convert the fraction $\frac{2}{3}$ into a recurring decimal number.	Convert the decimal numbers below into mixed fractions: a) 5.10 b) 11.7

\begin{tabular}{|c|c|}
\hline Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB4 \& Numbers and Numeration; Decimals \& Percent (M-06-098) CODE BB8 \\
\hline Lesson Title: Conversion from Fractions to Decimals \& Lesson Title: Conversion from Fractions to Percentages \\
\hline \begin{tabular}{l}
Using long division, convert the mixed fraction \(3 \frac{4}{3}\) into a decimal number up to the thousands place. \\
Tip: Convert the mixed fraction into an improper fraction, then use long division.
\end{tabular} \& Explain the word percentage.

30 seconds

\hline Numbers and Numeration; Decimals \& Percent (M-06-098) CODE BB9 \& N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-136) CODE BB13

\hline Lesson Title: Conversion from Fractions to Percentages \& Lesson Title: Proportion and Fractions

\hline | Convert the fractions into percentages: |
| :--- |
| a) $\frac{14}{20}$ |
| b) $\frac{6}{15}$ | \& Complete the sentence: When two fractions are \qquad we say they are in proportion.

$$
30 \text { seconds }
$$

\hline Numbers and Numeration; Decimals \& Percent (M-06-098) CODE BB10 \& N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-136) CODE BB14

\hline Lesson Title: Conversion from Fractions to Percentages \& Lesson Title: Proportion and Fractions

\hline | Convert the percentages below into simple fractions: |
| :--- |
| a) 120% |
| b) 75% | \& | The following fractions are equivalent. Using proportions, find the values of x and y |
| :--- |
| a) $\frac{x}{6}$ and $\frac{1}{3}$ |
| b) $\frac{3}{15}$ and $\frac{1}{y}$ |
| 2 minutes |

\hline
\end{tabular}

Numbers and Numeration; Decimals \& Percent (M-06-099) CODE BB11	N\&N; Everyday Arithmeici; Ratio and Proportion (M-06-136) CODE BB15
Lesson Title: Conversion from Percentages to Decimals	Lesson Title: Proportion and Fractions
Convert the following percentages into decimal numbers: a) 175% b) 13%	The following fractions are equivalent. Using proportions, find the values of v and q a) $\frac{20}{100}$ and $\frac{v}{5}$ b) $\frac{75}{q}$ and $\frac{3}{2}$ 2 minutes
Numbers and Numeration; Decimals \& Percent (M-06-100) CODE BB12	N\&N; Everyday Arithmeic; Ratio and Proporion (M-06-137) CODE BB16
Lesson Title: Conversion from Decimals to Percentages	Lesson Title: Proportion and Fractions
Convert the following decimal numbers into percentages: a) 1.230 b) 0.74	In the class, there is a ratio of 3 boys : 2 girls. This means that \qquad 30 seconds
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB17	N\&N; Everyday Arithmelic; Ratio and Proporition (M-06-130) CODE B821
Lesson Title: Proportion and Fractions	Lesson Title: Proportion and Fractions
I have a bag containing red and blue marbles. The bag has a total of 15 red marbles and 9 blue marbles. a) Determine the simple fraction that relates the number of blue marbles to the number of red marbles inside the bag. b) Determine the ratio of blue to red marbles in its simplest form.	If the ratios $\mathbf{2 : y}$ and $\mathbf{1 8 : 8 1}$ are equivalent, find the value of \boldsymbol{y}.
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB18	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-140) CODE BB22
Lesson Title: Proportion and Fractions	Lesson Title: Writing ratio in its simplest form.
The ratio of bananas to melons is given as $\mathbf{3 0}: \mathbf{1}$. If there are 300 bananas, how many melons are there? $1 \frac{1}{2} \text { minutes }$	Write the following ratios in their simplest form: a) Garry practices 200 math sums in 240 minutes b) 24 blue cars out of 30 cars c) 16 blue lollipops to 24 Iollipops

N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-138) CODE BB19	N\&N; Everyday Arithmetic; Ratio and Proporition (M-06-141) CODE B823
Lesson Title: Equivalent ratio	Lesson Title: Sharing Quantities Using Ratio
Pick three ratios that are equivalent to $\mathbf{4 : 3}$ a) $8: 6$	Work out each of the following problems.
b) $9: 12$	a) Divide 315 ml in the ratio $2: 7$
c) $20: 15$	b) Share 120 hours in the ratio $5: 8$
d) $32: 24$	c) Divide Le 240,000 in the ratio $1: 3$
e) $36: 28$ 2 minutes	2 minutes
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-138) CODE BE20	N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-141) CODE BB24
Lesson Title: Equivalent ratio	Lesson Title: Sharing Quantities Using Ratio
Which of the following ratios is equivalent to 27:9 ?	Pearl has 60 sweets. The ratio of red sweets to green sweets is $3: 2$. How many red sweets does Pearl have?
a) $9: 6$	
b) $3: 1$	
c) $1: 3$	
30 seconds	2 minutes
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-142) CODE BB25	N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB29
Lesson Title: Word Problems with Ratio	Lesson Title: Solving Word Problems Involving Fractions
If Solly drew 10 squares and 30 triangles, then: a) What is the ratio of squares to triangles in simplest form? b) What is the ratio of triangles to all shapes in simplest form?	Martha spent $\frac{4}{9}$ of her allowance on food and shopping. What fraction of her allowance is left over?
2 minutes	1 minute
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-143) CODE BE26	N\&N: Everyday Arithmetic; Ratio and Proporition (M-06-148) CODE BB30
Lesson Title: Direct Proportion	Lesson Title: Solving Word Problems Involving Percentages
Rose gets paid Le 15,000 for each hour she works. If she works 45 hours per week, how much does she earn each week?	Out of 400 learners who took an IQ test, 240 achieved an above average score. What percentage of the learners achieved an above average score?
2 minutes	$1 \frac{1}{2}$ minutes

N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE B827	Theme: Everyday Arithmetic; Percentages (M-06-101) CODE BB31
Lesson Title: Solving Word Problems Involving Fractions	Lesson Title: Percentage of a Quantity - Simple Problems
Terrence won Le 123,000 from a Saturday night game show. He decides to invest $\frac{3}{4}$ of his winnings and spends the rest with his family. a) How much of the winnings did he invest? b) How much of the winnings did he spend with his family?	Work out each of the following problems: a) Find 10% of 20 km b) Find 16% of 15 cm
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB28	Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB32
Lesson Titte: Solving Word Problems Involving Fractions	Lesson Title: Percentage of a Quantity - More Problems
A man spends $\frac{2}{5}$ of his salary on house rent, $\frac{3}{10}$ of his salary on food and $\frac{1}{8}$ of his salary on clothes altogether. What fraction of his salary did he spend?	Solve the following word problem: A marketplace has a total of 300 stalls available for local vendors to sell their goods. In the first week, 60% of the stalls were occupied. a. Find the actual number of stalls occupied. b. Find the actual number of stalls unoccupied.
Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB33	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB37
Lesson Title: Percentage of a Quantity - More Problems	Lesson Title: Simple Interest
Solve the following word problem: There were 1800 onions in a trader's basket. When he got to market, the trader noticed that 12% of the onions were bad and needed to be thrown away. a. How many onions did the trader throw away? b. If the trader sold 450 onions, what percentage of onions did he manage to sell?	Calculate the following using Simple Interest: Sara deposits Le100,000 at a bank at an interest rate of 7% per year. How much money did Sara accumulate after 4 years?
Theme: Everyday Arithmetic; Percentages (M-06-103) CODE B34	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB38
Lesson Title: Profit and Loss as Percentages	Lesson Title: Simple Inter
Work out each of the following problems: a) Increase Le 300 by 20% b) Decrease 20L by 4%	Enrico bought a car for Le 980,392. He took a Le 570,000 loan from a bank at an interest rate of 17% per year for a 3 -year period. What is the total amount (interest and loan) that he would have to pay the bank at the end of 3 years?
2 minutes	2 minutes

Theme: Everyday Arithmetic; Percentages (M-06-104) CODE BB35	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB39
Lesson Title: Word Problems Involving Profit and Loss Percentage	Lesson Title: Simple Interest
Solve the following word problem: A family had planted 20 acres of corn. Unfortunately, there was a severe drought and the family lost 5% of the harvest. a. How many acres of corn did the family lose because of the drought? b. How many acres of corn was the family able to successfully harvest?	Solve the following word problem using Simple Interest: Mrs. Lewis borrowed Le 200,000 from the bank and was charged an interest rate of 15% per year. If she paid the loan off at the end 3 years. a. How much did she pay in total for her loan? b. How much did she pay in interest?
Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB36	Theme: Measurement and Estimation; Length (M-06-057) CODE BB40
Lesson Title: Simple Interest	Lesson Title: Conversion from Inches to Feet and Feet to Inches
Write down the formula for calculating Simple Interest	State the rule used to convert from feet to inches and from inches to feet.
30 seconds	1 minute
Theme: Measurement and Estimation; Length (M-06-057) CODE BB41	Theme: Measurement and Estimation; Length (M-06-059) CODE BB45
Lesson Title: Conversion from Inches to Feet and Feet to Inches	Lesson Title: Measuring Objects in Millimetres and Centimetres
Fill in the blank box with the appropriate sign: a. 4 \square $12=\frac{1}{3}$ feet long b. 25 \square $12=300$ inches long C. 24 \square $12=2$ feet long $1 \frac{1}{2}$ minutes	Convert the following centimetres to millimetres or millimetres to centimetres by multiplying or dividing: a. 3 millimetres $=$ \qquad centimetres b. 20 centimetres $=$ \qquad millimetres c. 17 millimetres $=$ \qquad centimetres $1 \frac{1}{2} \text { minutes }$
Theme: Measurement and Estimation; Length (M-06-057) CODE BB42	Theme: Measurement and Estimation; Length (M-06-060) CODE BB46
Lesson Title: Conversion from Inches to Feet and Feet to Inches	Lesson Title: Conversion of Lengths from Metres to Kilometres
When buying a television, the screen size is measured in inches between opposite corners. How many feet across is a 45 -inch television?	Complete the rule: To convert from kilometres to metres, we \qquad . To convert from metres to kilometres, we \qquad .

Theme: Measurement and Estimation; Length (M-06-058) CODE B43	Theme: Measurement and Estimation; Length (M-06-060) CODE BB47
Lesson Title: Measuring Objects in Millimetres and Centimetres	Lesson Title: Conversion of Lengths from Metres to Kilom
Complete the rule: To convert from millimetres to centimetres, we \qquad To convert from centimetres to millimetres, we	Convert the following centimetres to millimetres or millimetres to centimetres by multiplying or dividing: a. 24 kilometres $=$ \qquad metres b. 358 metres $=$ \qquad kilometres c. 19 kilometres = __ metres
2 minutes	2 minutes
Theme: Measurement and Estimation; Length (M-06-059) CODE BB44	Theme: Geometty Perimeters and Areas (M-06-081) CODE BB48
Lesson Title: Measuring Objects in Millimetres and Centimetres	Lesson Title: Perimeter of Shapes
Complete the equations with multiply (\times) or divide (\div): a. 16 \square $10=\frac{8}{5}$ centimetres long b. 40 \square $10=4$ centimetres long c. 6 \square $10=60$ millimetres long	Consider the triangle: Write down the general formula to calculate the perimeter of the given triangle.
Theme: Geometry Perimeters and Areas (M-06-081) CODE BB49	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB53
Lesson Title: Perimeter of Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Consider the triangle: If the perimeter of the triangle is 125 cm , determine the expression for \mathbf{a} in terms of \mathbf{b} and \mathbf{c}.	Consider the irregular shape below: Calculate the perimeter of the shape. 1 minute
Theme: Geometry Perimeters and Areas (M-06-081) CODE BB50	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB54
Lesson Title: Perimeter of Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Workout the perimeter of the following shapes: 1) 2) 2 cm Perimeter $=$ \qquad cm Perimeter $=$ \qquad in	Consider the irregular shape: Calculate the perimeter of the shape. 2 minutes

Theme: Geometry Perimeters and Areas (M-06-084) CODE BB59	Theme: Geometry of Triangles (M-06-091) CODE BB63
Lesson Title: Area of Triangles	Lesson Title: Properties of Right-Angled Triangles
Consider the triangle below and answer the following questions: a) Determine the perimeter b) Determine the area	Find the missing angle in the triangle:
Theme: Geometry Perimeters and Areas (M-06-084) CODE BB60	Theme: Geometry of Triangles (M-06-091) CODE BB64
Lesson Title: Area of Triangles	Lesson Title: Properties of Right-Angled Triangles
Consider the triangle and answer the following questions: a) Determine the perimeter. b) Determine the area.	Consider the triangle: Determine the value of the missing angle c°
Theme: Geometry of Triangles (M-06-092) CODE BB65	Theme: Geometry of Triangles (M-06-092) CODE BB66
Lesson Title: Properties of Isosceles Triangles	Lesson Title: Properties of Isosceles Triangles
Consider the triangle below: Determine the length of side $D F$.	Consider the triangle below: Determine the size of angle x .
Theme: Geometry of Triangles (M-06-092) CODE BB67	ITheme: Geometry of Triangles (M-06-093) CODE BB68
Lesson Title: Properties of Isosceles Triangles	Lesson Title: Properties of Equilateral Triangles
Consider the triangle: Determine the size of angles \boldsymbol{x}° and \boldsymbol{y}°	Consider the equilateral triangle below: a) Determine the perimeter of the triangle b) Determine the area of the triangle.

Solve the following word problem:

Consider an equilateral triangle whose sides are 40 mm .
a) What is the perimeter of the equilateral triangle?
b) If the area is $320 \mathrm{~mm}^{2}$, find the height of the equilateral triangle .

