Sierra Leone

WINNING TEAMS: Mathematics

Questions and Answers for Referees

Primary 6 (Term 2) to support JSS1 Term 2

Leh Wi Lan

Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB1	Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB1
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Fractions to Decimals
Using the long division method, convert the fraction $\frac{4}{5}$ into a decimal number up to the thousandths place.	Answer: $\begin{gathered} 0.800 \\ \begin{array}{c} -\frac{40}{4.000} \\ \\ \\ \\ \frac{40}{0} \end{array} \end{gathered}$ Answer: 0.800
Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB2	Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB2
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Fractions to Decimals
Using the long division method; convert the fraction $\frac{19}{25}$ into a decimal number up to the thousandths place. 2 minutes	Answer: Answer: 0.760
Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB3	Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB3
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Fractions to Decimals
Using long division, convert the fraction $\frac{2}{3}$ into a recurring decimal number.	Answer: Answer: 0.6

Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB4	Numbers and Numeration; Decimals \& Percent (M-06-096) CODE BB4
Lesson Title: Conversion from Fractions to Decimals	Lesson Title: Conversion from Fractions to Decimals
Using long division, convert the mixed fraction $3 \frac{4}{3}$ into a decimal number up to the thousands place. Tip: Convert the mixed fraction into an improper fraction, then use long division.	Answer: Answer: 4.333
Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB5	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB5
Lesson Title: Conversion from Decimals to Fractions	Lesson Title: Conversion from Decimals to Fractions
Convert the decimal numbers below into simple fractions: a) 0.250 b) 0.78	Answer: a) $0.250=\frac{250}{1000}=\frac{250 \div 250}{1000 \div 250}=\frac{\mathbf{1}}{4}$ b) $\mathbf{0 . 7 8}=\frac{78}{100}=\frac{78 \div 2}{100 \div 2}=\frac{\mathbf{3 9}}{\mathbf{5 0}}$
Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB6	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB6
Lesson Title: Conversion from Decimals to Fractions	Lesson Title: Conversion from Decimals to Fractions
Convert the decimal numbers below into improper fractions: a) 0.66 b) 0.88	Answer: a) $0.66=\frac{66}{100}=\frac{66 \div 2}{100 \div 2}=\frac{\mathbf{3 3}}{\mathbf{5 0}}$ b) $0.88=\frac{88}{100}=\frac{88 \div 2}{100 \div 2}=\frac{\mathbf{4 4}}{\mathbf{5 0}}$
Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB7	Numbers and Numeration; Decimals \& Percent (M-06-097) CODE BB7
Lesson Title: Conversion from Decimals to Fractions	Lesson Title: Conversion from Decimals to Fractions
Convert the decimal numbers below into mixed fractions: a) 5.10 b) 11.7	Answer: a) $5.10=\frac{51}{10}=\mathbf{5} \frac{\mathbf{1}}{\mathbf{1 0}}$ b) $11.7=\frac{117}{10}=\mathbf{1 1} \frac{\mathbf{7}}{10}$
2 minutes	

| Numbers and Numeration; Decimals \& Percent (M-06-100) CODE BB12 | Numbers and Numeration; Decimals \& Percent (M-06-100) CODE BB12 |
| :--- | :--- | :--- |
| Lesson Title: Conversion from Decimals to Percentages | Lesson Title: Conversion from Decimals to Percentages |
| Convert the following decimal numbers into percentages: | Answer: |
| a) 1.230 | a) $1.230=\frac{1230 \div 10}{1000 \div 10}=\frac{123}{100}=\mathbf{1 2 3} \%$ |
| b) 0.74 | b) $0.74=\frac{74}{100}=\mathbf{7 4} \%$ |

N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB16	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB16
Lesson Title: Proportion and Fractions	Lesson Title: Proportion and Fractions
In the class, there is a ratio of 3 boys : 2 girls. This means that \qquad	Answer: In the class, there is a ratio of 3 boys : 2 girls. This means that for every 3 boys there are 2 girls.
N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB17	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB17
Lesson Title: Proportion and Fractions	Lesson Title: Proportion and Fractions
I have a bag containing red and blue marbles. The bag has a total of 15 red marbles and 9 blue marbles. a) Determine the simple fraction that relates the number of blue marbles to the number of red marbles inside the bag. b) Determine the ratio of blue to red marbles in its simplest form.	Answer: a) $\frac{\text { Number of blue marbles }}{\text { Number of red marbles }}=\frac{9}{15}=\frac{9 \div 3}{15 \div 3}=\frac{\mathbf{3}}{5}$ b) $\frac{\text { Number of blue marbles }}{\text { Number of red marbles }}=\frac{3}{5}$ Ratio 3 : 5
N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB18	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-137) CODE BB18
Lesson Title: Proportion and Fractions	Lesson Title: Proportion and Fractions
The ratio of bananas to melons is given as $\mathbf{3 0} \mathbf{:} \mathbf{1}$. If there are 300 bananas, how many melons are there? $1 \frac{1}{2}$ minutes	Answer: Write the ratio as a fraction: $\mathbf{3 0}: \mathbf{1}=\frac{30}{1}$ Find the total number of melons: $\begin{aligned} & \frac{30}{1}=\frac{300}{\text { Number of melons }} \\ & 30 \times(\text { number of melons })=300 \end{aligned}$ number of melons $=10$ Therefore: There are ten melons in total.
N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-138) CODE BB19	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-138) CODE BB19
Lesson Title: Equivalent ratio	Lesson Title: Proportion and Fractions
Pick three ratios that are equivalent to 4:3 a) $8: 6$	Answer: Correct options : a, c and d
b) $9: 12$	a) $8: 6=\frac{8 \div 2}{6 \div 2}=\frac{4}{3}=4: \mathbf{3}$
c) $20: 15$	c) $20: 15=\frac{20 \div 5}{15 \div 5}=\frac{4}{3}=4: 3$
d) $32: 24$	d) $32: 24=\frac{32 \div 8}{24 \div 8}=\frac{4}{3}=4: 3$
e) $36: 28$ 2 minutes	

N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-138) CODE BE20	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-138) CODE BE20
Lesson Title: Equivalent ratio	Lesson Title: Proportion and Fractions
Which of the following ratios is equivalent to 27:9? a) $9: 6$ b) $3: 1$ c) $1: 3$	Answer: b) $3: 1$ Working out: $27: 9=\frac{27}{9}=\frac{27 \div 9}{9 \div 9}=\frac{3}{1}=\mathbf{3}: \mathbf{1}$
30 seconds	
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-139) CODE BB21	N\&N: Everyday Arithmeic; Ratio and Proporition (M-06-139) CODE BE21
Lesson Title: Proportion and Fractions	Lesson Title: Proportion and Fractions
If the ratios $\mathbf{2 : y}$ and $\mathbf{1 8}: \mathbf{8 1}$ are equivalent, find the value of \boldsymbol{y}.	Answer: Notice: Since the ratios are equivalent, we can equate the fractions. That is: $\frac{2}{y}=\frac{18}{81}$ $162=18 y$ by cross-multiplication Hence: $\boldsymbol{y}=\mathbf{9}$ when dividing both sides by 18 .
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-140) CODE BB22	N\&N; Everyday Arithmetic; Ratio and Proporition (M-06-140) CODE BE22
Lesson Title: Writing ratio in its simplest form.	Lesson Title: Writing ratio in its simplest form.
Write the following ratios in their simplest form: a) Garry practices 200 math sums in 240 minutes	Answer: a) $200: 240=\frac{200}{240}=\frac{200 \div 40}{240 \div 40}=\frac{5}{6}$ Simplest form: 5:6
b) 24 blue cars out of 30 cars	b) $24: 30=\frac{24}{30}=\frac{24 \div 4}{30 \div 4}=\frac{4}{5}$ Simplest form: 4 : 5
c) 16 blue lollipops to 24 Iollipops 2 minutes	c) $16: 24=\frac{16}{24}=\frac{16 \div 8}{24 \div 8}=\frac{2}{3}$ Simplest form: 2:3
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-141) CODE B323	N\&N; Everyday Arithmeic; Ratio and Proporition (M-06-141) CODE BB23
Lesson Title: Sharing Quantities Using Ratio	Lesson Title: Sharing Quantities Using Ratio
Work out each of the following problems.	Answer: a) $315 \mathrm{ml} \times \frac{2}{7}=\frac{630 \mathrm{ml}}{7}=\mathbf{9 0} \mathbf{m l}$
a) Divide 315 ml in the ratio $2: 7$	b) 120 hours $\times \frac{5}{8}=\frac{240 \text { hours }}{8}=\mathbf{7 5}$ hours
c) Divide Le 240,000 in the ratio $1: 3$	c) Le $240,000 \times \frac{1}{3}=\frac{\text { Le2 } 20,000}{3}=$ Le 80,000
2 minutes	

N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-141) CODE BB24	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-141) CODE BB24
Lesson Titte: Sharing Quantities Using Ratio	Lesson Title: Sharing Quantities Using Ratio
Pearl has 60 sweets. The ratio of red sweets to green sweets is $3: 2$. How many red sweets does Pearl have?	Answer: Notice: The number of red sweets in comparison to the total number of sweets is given by the ratio: $\mathbf{3}$: $\mathbf{5}$ $\frac{\text { Number of red sweets }}{\text { Total number of sweets }}=\frac{3}{5}$ Number of red sweets $=\frac{3}{5} \times 60$ Therefore: Number of red sweets $=\mathbf{3 6}$
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-142) CODE BB25	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-142) CODE B825
Lesson Title: Word Problems with Ratio	Lesson Titte: Proportion and Fractions
If Solly drew 10 squares and 30 triangles, then: a) What is the ratio of squares to triangles in simplest form? b) What is the ratio of triangles to all shapes in simplest form?	Answer: a) $10: 30=\frac{10 \div 10}{30 \div 10}=\frac{1}{3}=1: \mathbf{3}$ b) Notice: Number of all shapes $=$ Squares + Triangles $=40$ $30: 40=\frac{30 \div 10}{40 \div 10}=\frac{3}{4}=3: 4$
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-143) CODE BE26	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-143) CODE BE26
Lesson Title: Direct Proportion	Lesson Title: Direct Proportion
Rose gets paid Le 15,000 for each hour she works. If she works 45 hours per week, how much does she earn each week?	Answer: If we let x represent the amount she earns each week, then: 15,000 : $1 \mathrm{hr}=\boldsymbol{x}: 45 \mathrm{hrs}$ $\frac{\text { Le } 15,000}{1 \mathrm{hr}}=\frac{x}{45 \mathrm{hrs}}$ By cross-multiplying: $x=675,000 \text { per week }$
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB27	N\&N: Everyday Arithmeic; Ratio and Proportion (M-06-146) CODE BE27
Lesson Title: Solving Word Problems Involving Fractions	Lesson Titte: Solving Word Problems Involving Fractions
Terrence won Le 123,000 from a Saturday night game show. He decides to invest $\frac{3}{4}$ of his winnings and spends the rest with his family. a) How much of the winnings did he invest? b) How much of the winnings did he spend with his family?	Answer: Notice: He invests three-fourths and spends one-fourths of his winnings. a) $\operatorname{Le} 123,000 \times \frac{3}{4}=\operatorname{Le} 92,250$ b) Le $123,000 \times \frac{1}{4}=L e 30,750$
2 minutes	

N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB28	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB28
Lesson Titte: Solving Word Problems Involving Fractions	Lesson Title: Solving Word Problems Involving Fractions
A man spends $\frac{2}{5}$ of his salary on house rent, $\frac{3}{10}$ of his salary on food and $\frac{1}{8}$ of his salary on clothes altogether. What fraction of his salary did he spend?	Answer: The fraction of the salary spent: $\begin{aligned} & =\frac{2}{5}+\frac{3}{10}+\frac{1}{8} \\ & =\frac{2 \times 2}{5 \times 2}+\frac{3}{10}+\frac{1}{8} \\ & =\frac{4}{10}+\frac{3}{10}+\frac{1}{8}=\frac{7}{10}+\frac{1}{8} \\ & =\frac{7}{10}+\frac{1}{8}=\frac{66}{80} \\ & =\frac{66 \div 2}{80 \div 2}=\frac{33}{40} \end{aligned}$
N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB29	N\&N: Everyday Arithmetic; Ratio and Proportion (M-06-146) CODE BB29
Lesson Titte: Solving Word Problems Involving Fractions	Lesson Title: Solving Word Problems Involving Fractions
Martha spent $\frac{4}{9}$ of her allowance on food and shopping. What fraction of her allowance is left over?	Answer: Let 1 be the whole part of the allowance The fraction of the allowance left over $=1-\frac{4}{9}=\frac{9-4}{9}=\frac{5}{9}$
1 minute	
N\&N: Everycay Arithmetic; Ratio and Proportion (M-06-148) CODE BB30	N\&N; Everyday Arithmetic; Ratio and Proportion (M-06-148) CODE BB30
Lesson Title: Solving Word Problems Involving Percentages	Lesson Title: Solving Word Problems Involving Fractions
Out of 400 learners who took an IQ test, 240 achieved an above average score. What percentage of the learners achieved an above average score? $1 \frac{1}{2} \text { minutes }$	Answer: $\begin{aligned} & \frac{\text { Number of above average learners }}{\text { Total number of learners }} \times 100=\% \\ & \frac{240 \div 80}{400 \div 80} \times 100=\frac{3}{5} \times 100=60 \% \end{aligned}$ 60% of the learners achieved an IQ score above average
Theme: Everyday Arithmetic; Percentages (M-06-101) CODE BB31	Theme: Everyday Arithmetic; Percentiages (M-06-101) CODE BB31
Lesson Title: Percentage of a Quantity - Simple Problems	Lesson Title: Percentage of a Quantity - Simple Problems
Work out each of the following problems: a) Find 10% of 20 km b) Find 16% of 15 cm	Answer: a) $\frac{10}{100} \times 20 \mathrm{~km}=\frac{200 \mathrm{~km}}{100}=2 \mathrm{~km}$ b) $\frac{16}{100} \times 15 \mathrm{~cm}=\frac{240 \mathrm{~cm}}{100}=2.4 \mathrm{~cm}$
1 minute	

Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB32	Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB32
Lesson Title: Percentage of a Quantity - More Problems	Lesson Title: Percentage of a Quantity - More Problems
Solve the following word problem: A marketplace has a total of 300 stalls available for local vendors to sell their goods. In the first week, 60% of the stalls were occupied. a. Find the actual number of stalls occupied. b. Find the actual number of stalls unoccupied.	Answer: a. $\frac{60}{100} \times 300$ stalls $=180$ stalls 180 stalls are occupied. b. Stalls unoccupied $=$ Total stalls - Stalls occupied $\begin{aligned} & =300-180 \\ & =120 \end{aligned}$ 120 stalls are unoccupied.
Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB33	Theme: Everyday Arithmetic; Percentages (M-06-102) CODE BB33
Lesson Title: Percentage of a Quantity - More Problems	Lesson Title: Percentage of a Quantity - More Problems
Solve the following word problem: There were 1800 onions in a trader's basket. When he got to market, the trader noticed that 12% of the onions were bad and needed to be thrown away.	Answer: a. $\frac{12}{100} \times 1800=216$ 216 onions were thrown away

a. How many onions did the trader throw away?
b. If the trader sold 450 onions, what percentage of onions did he manage to sell?
b. Number of onions available $=$ total onions - bad onions
$=1800-216=1584$ onions
Thus: $\frac{450}{1584} \times 100 \approx 28 \%$
The trader managed to sell 28% of onions.
3 minutes

Theme: Everyday Arithmetic; Percentages (M-06-103) CODE BB34

Theme: Everyday Arithmetic; Percentages (M-06-103) CODE B34	T
Lesson Title: Profit and Loss as Percentages	L

Lesson Title: Profit and Loss as Percentages
Answer:
Work out each of the following problems:
a) Increase Le 300 by 20\%
b) Decrease 20L by 4\%
a) Increase $=300+300 \times \frac{20}{100}=\boldsymbol{L} \boldsymbol{e} \mathbf{3 6 0}$
b) Decrease $=20-20 \times \frac{4}{100}=19.2 L$

Theme: Everyday Arithmetic; Percentages (M-06-104) CODE BB35

Lesson Title: Word Problems Involving Profit and Loss Percentage
Solve the following word problem:

A family had planted 20 acres of corn. Unfortunately, there was a severe drought and the family lost 5% of the harvest.
a. How many acres of corn did the family lose because of the drought?
b. How many acres of corn was the family able to successfully harvest?

Answer:
a. Number of Acres lost $=\frac{5}{100} \times 20=1$ acre
b. Total Harvest $=$ Original acres - lost acres

$$
\begin{aligned}
& =20-1 \\
& =19
\end{aligned}
$$

The family was able to harvest 19 acres of corn.

Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB36	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB36
Lesson Title: Simple Interest	Lesson Title: Simple Interest
Write down the formula for calculating Simple Interest	Answer: $A=P(1+r t)$ Where: A is the accumulated amount P is the principle amount. r is the interest percentage t is time taken to earn interest.
Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB37	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB37
Lesson Title: Simple Interest	Lesson Title: Simple Interest
Calculate the following using Simple Interest: Sara deposits Le100,000 at a bank at an interest rate of 7\% per year. How much money did Sara accumulate after 4 years?	Answer: $\begin{aligned} A & =P(1+r t) \\ A & =100,000(1+0.07 \times 4) \\ & =100,000(1.28) \\ & =\text { Le } 128,000 \end{aligned}$
Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB38	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB38
Lesson Title: Simple Interest	Lesson Title: Simple Interest
Enrico bought a car for Le 980,392. He took a Le 570,000 loan from a bank at an interest rate of 17% per year for a 3 -year period. What is the total amount (interest and loan) that he would have to pay the bank at the end of 3 years?	Answer: $\begin{aligned} A= & P(1+r t) \\ & =570,000(1+0.17 \times 3) \\ & =\text { Le } 860,700 \end{aligned}$
Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB39	Theme: Everyday Arithmetic; Percentages (M-06-105) CODE BB39
Lesson Title: Simple Interest	Lesson Title: Simple Interest
Solve the following word problem using Simple Interest: Mrs Lewis borrowed Le 200,000 from the bank and was charged an interest rate of 15% per year. If she paid the loan off at the end 3 years. a. How much did she pay in total for her loan? b. How much did she pay in interest?	Answer: a. $\begin{aligned} A & =P(1+r t) \\ & =200,000(1+0.15 \times 3) \\ & =\text { Le } 290,000 \end{aligned}$ She paid Le $\mathbf{2 9 0}, \mathbf{0 0 0}$ total for her loan. $\begin{aligned} \text { b. Interest } & =\text { Accumulated amount }- \text { principle amount } \\ & =\text { Le } 290,000-\text { Le } 200,000 \\ & =\text { Le } 90,000 \end{aligned}$
2 minutes	

Theme: Measurement and Estimation; Length (M-06-057) CODE BB40	Theme: Measurement and Estimation; Length (M-06-057) CODE BB40
Lesson Title: Conversion from Inches to Feet and Feet to Inches	Lesson Title: Conversion from Inches to Feet and Feet to Inches
State the rule used to convert from feet to inches and from	Answer:
inches to feet.	Feet to inches $\rightarrow \quad$ multiply measurement by 12. Inches to feet $\rightarrow \quad$ divide measurement by 12.

Theme: Geometry Perimeters and Areas (M-06-081) CODE BE48	Theme: Geometry Perimeters and Areas (M-06-081) CODE BB48
Lesson Title: Perimeter of Shapes	Lesson Title: Perimeter of Shapes
Consider the triangle: Write down the general formula to calculate the perimeter of the given triangle.	Answer: $P=a+b+c$
Theme: Geometry Perimeters and Areas (M-06-081) CODE BB49	Theme: Geometry Perimeters and Areas (M-06-081) CODE BB49
Lesson Title: Perimeter of Shapes	Lesson Title: Perimeter of Shapes
Consider the triangle: If the perimeter of the triangle is 125 cm , determine the expression for \mathbf{a} in terms of \mathbf{b} and \mathbf{c}.	Answer: $P=a+b+c$ $125=a+b+c$ subtract b and c to solve for a. Hence: $a=125-b-c$
Theme: Geometry Perimeters and Areas (M-06-081) CODE BB50	Theme: Geometty Perimeters and Areas (M-06-081) CODE BB50
Lesson Title: Perimeter of Shapes	Lesson Title: Perimeter of Shapes
Workout the perimeter of the following shapes: 1) 2) 2 cm Perimeter $=$ \qquad cm Perimeter $=$ \qquad in	Answer: 1) $\begin{aligned} & P=2(l+w) \\ & P=2(2+7) \\ & P=\mathbf{1 8} \mathbf{c m} \end{aligned}$ 2) $\begin{aligned} & P=a+b+c \\ & P=4+3+6 \\ & P=\mathbf{1 3} \mathbf{i n} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-081) CODE BB51	Theme: Geometry Perimeters and Areas (M-06-081) CODE BB51
Lesson Title: Perimeter of Shapes	Lesson Title: Perimeter of Shapes
Work out the perimeter of the following shapes: a) b) 2 minutes	Answer: $\begin{aligned} \text { 1) } P & =2 a+2 a \\ P & =2(4)+2(4) \\ P & =\mathbf{1 6} \mathbf{c m} \\ \text { 2) } P & =2(l+w) \\ P & =2(4+7) \\ P & =\mathbf{2 2 m} \end{aligned}$

Theme: Geometry Perimeters and Areas (M-06-082) CODE BB52	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB52
Lesson Title: Finding the Perimeter of Irregular Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Consider the irregular shape: Calculate the perimeter of the shape.	Answer: $\begin{aligned} & P=6+4+2+3+4+7 \\ & P=\mathbf{2 6} \mathbf{c m} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-082) CODE BB53	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB53
Lesson Title: Finding the Perimeter of Irregular Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Consider the irregular shape below: Calculate the perimeter of the shape.	Answer: $\begin{aligned} & P=8+10+5+7+3+3 \\ & P=\mathbf{3 6} \mathbf{c m} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-082) CODE BB54	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB54
Lesson Title: Finding the Perimeter of Irregular Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Consider the irregular shape: Calculate the perimeter of the shape.	Answer: $\begin{aligned} & P=60+15+40+30+20+45 \\ & P=\mathbf{2 1 0 m m} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-082) CODE BB55	Theme: Geometry Perimeters and Areas (M-06-082) CODE BB55
Lesson Title: Finding the Perimeter of Irregular Shapes	Lesson Title: Finding the Perimeter of Irregular Shapes
Consider the irregular shape: Calculate the perimeter of the shape.	Answer: $\begin{aligned} & P=12+7+4+2+8+9 \\ & P=\mathbf{4 2 c m} \end{aligned}$

Theme: Geometry Perimeters and Areas (M-06-083) CODE BB56	Theme: Geometry Perimeters and Areas (M-06-083) CODE BB56
Lesson Title: Area of Squares and Rectangles	Lesson Title: Area of Squares and Rectangles
Consider the square: s Write down the general formula for calculating the area of a square.	Answer: $\begin{aligned} & P=\boldsymbol{s} \times \boldsymbol{s} \\ & \quad \text { or } \\ & P=\boldsymbol{s}^{2} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-083) CODE BB57	Theme: Geometry Perimeters and Areas (M-06-083) CODE BB57
Lesson Title: Area of Squares and Rectangles	Lesson Titte: Area of Squares and Rectangles
Consider the rectangle: Write down the general formula for calculating the area.	Answer: $\begin{aligned} & P=\boldsymbol{l} \times \boldsymbol{w} \\ & \quad \text { or } \\ & P=\boldsymbol{l} \boldsymbol{w} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-083) CODE BB58	Theme: Geometry Perimeters and Areas (M-06-083) CODE BB58
Lesson Title: Area of Squares and Rectangles	Lesson Title: Area of Squares and Rectangles
Calculate the area of the following rectangle:	Answer: $\begin{aligned} & P=\boldsymbol{l} \times \boldsymbol{w} \\ & P=4 \times \mathbf{3}=\mathbf{1 2 i n c h e s} \end{aligned}$
Theme: Geometry Perimeters and Areas (M-06-084) CODE BB59	Theme: Geometry Perimeters and Areas (M-06-084) CODE BB59
Lesson Title: Area of Triangles	Lesson Title: Area of Triangles
Consider the triangle below and answer the following questions: a) Determine the perimeter b) Determine the area	Answer: a) $P=3 \mathrm{~cm}+6 \mathrm{~cm}+3 \mathrm{~cm}=12 \mathrm{~cm}$ b) $\begin{aligned} & A=\frac{1}{2} \times \text { base } \times \text { perpendicular height } \\ & A=\frac{1}{2} \times 6 \mathrm{~cm} \times 7 \mathrm{~cm}=\mathbf{2 1} \mathbf{c m}^{2} \end{aligned}$

Theme: Geometry Perimeters and Areas (M-06-084) CODE BB60	Theme: Geometry Perimeters and Areas (M-06-084) CODE BB60
Lesson Title: Area of Triangles	Lesson Title: Area of Triangles
Consider the triangle and answer the following questions: a) Determine the perimeter. b) Determine the area.	Answer: a) $P=8 \mathrm{~cm}+12 \mathrm{~cm}+5 \mathrm{~cm}=\mathbf{2 5} \mathbf{c m}$ b) $\begin{aligned} & A=\frac{1}{2} \times \text { base } \times \text { perpendicular height } \\ & A=\frac{1}{2} \times 12 \mathrm{~cm} \times 5 \mathrm{~cm}=\mathbf{3 0} \mathbf{c m}^{2} \end{aligned}$
Theme: Geometry Perimeters and Areas ($\mathrm{M}-06$-085) CODE BB61	Theme: Geometry Perimeters and Areas (M-06-085) CODE BB61
Lesson Title: Area of Composite Shapes	Lesson Title: Area of Composite Shapes
Consider the composite shape Determine the area of the shape.	Answer: Area of rectangle $=1 \times \mathrm{w}$ Area of rectangle $=20 \mathrm{~m} \times 18 \mathrm{~m}=\mathbf{3 6 0} \mathrm{m}^{2}$ While: Area of triangle $=\frac{1}{2} \times$ base \times peperndicular height $\mathrm{A}=\frac{1}{2} \times 26 \mathrm{~m} \times 16 \mathrm{~cm}=208 \mathrm{~m}^{2}$ Thus: Area of composite shape $=208 \mathrm{~m}^{2}+360 \mathrm{~m}^{2}$ $=568 \mathrm{~m}^{2}$
Theme: Geometry of Triangles ($\mathrm{M}-06$-091) CODE BB62	Theme: Geometry of Triangles ($\mathrm{M}-06$-091) CODE BB62
Lesson Title: Properties of Right-Angled Triangles	Lesson Titte: Properties of Right-Angled Triangles
Calculate the sum of the interior angles of the triangle:	Answer: Sum of the interior angles $=48^{\circ}+23^{\circ}+109^{\circ}=180^{\circ}$
Theme: Geometry of Triangles (M-06-091) CODE BB63	Theme: Geometry of Triangles (M-06-091) CODE BB63
Lesson Title: Properties of Right-Angled Triangles	Lesson Titte: Properties of Right-Angled Triangles
Find the missing angle in the triangle:	Answer: Sum of the interior angles $\begin{aligned} & x^{\circ}+106^{\circ}+42^{\circ}=180^{\circ} \\ & x^{\circ}=180^{\circ}-106^{\circ}-42^{\circ} \\ & \boldsymbol{x}^{\circ}=32^{\circ} \end{aligned}$

Theme: Geometry of Triangles (M-06-091) CODE BB64	Theme: Geometry of Triangles (M-06-091) CODE BB64
Lesson Title: Properties of Right-Angled Triangles	Lesson Title: Properties of Right-Angled Triangles
Consider the triangle: Determine the value of the missing angle c°	Answer: $\begin{aligned} & \text { Sum ofthe angles }=c^{\circ}+25^{\circ}+90^{\circ} \\ & 180^{\circ}=c^{\circ}+25^{\circ}+90^{\circ} \\ & 180^{\circ}-25^{\circ}-90^{\circ}=c^{\circ} \\ & c^{\circ}=65^{\circ} \end{aligned}$
Theme: Geometry of Triangles (M-06-092) CODE BB65	Theme: Geometry of Triangles (M-06-092) CODE BB65
Lesson Title: Properties of Isosceles Triangles	Lesson Title: Properties of Isosceles Triangles
Consider the triangle below: Determine the length of side DF.	Answer: Note: \triangle DFE is an isosceles triangle Then it follows that: $\mathrm{DF}=\mathrm{EF}$ (sides opposite equal angles) Hence: DF = 5cm
Theme: Geometry of Triangles (M-06-092) CODE BB66	Theme: Geometry of Triangles (M-06-092) CODE BB66
Lesson Title: Properties of Isosceles Triangles	Lesson Title: Properties of Isosceles Triangles
Consider the triangle below: Determine the size of angle x .	Answer: $\Delta A B C$ is an isosceles triangle Then: $40^{\circ}=x$ (angles opposite equal sides) Hence: $x=4{ }^{\circ}$
Theme: Geometry of Triangles (M-06-092) CODE BB67	Theme: Geometry of Triangles (M-06-092) CODE BB67
Lesson Title: Properties of Isosceles Triangles	Lesson Title: Properties of Isosceles Triangles
Consider the triangle: Determine the size of angles \boldsymbol{x}° and \boldsymbol{y}°	Answer: Note: The triangle is an isosceles triangle Then: $\mathbf{7 2}^{\circ}=\boldsymbol{x}^{\circ}$ (angles opposite equal sides) And by the sum of interior angles of a triangle, we have: $\begin{aligned} & 180^{\circ}=72^{\circ}+72^{\circ}+y^{\circ} \\ & 180^{\circ}-144^{\circ}=y^{\circ} \end{aligned}$ Therefore: $y^{\circ}=36^{\circ}$

Theme: Geometry of Triangles (M-06-093) CODE BB68	Theme: Geometry of Triangles (M-06-093) CODE BB68
Lesson Title: Properties of Equilateral Triangles	Lesson Title: Properties of Equilateral Triangles
Consider the equilateral triangle below: a) Determine the perimeter of the triangle b) Determine the area of the triangle.	Answer: a) $P=8 \mathrm{~cm}+8 \mathrm{~cm}+8 \mathrm{~cm}=\mathbf{2 4} \mathbf{c m}$ b) $A=\frac{1}{2} \times$ base \times perpendicular height $A=\frac{1}{2} \times 8 \mathrm{~cm} \times 6.9 \mathrm{~cm}=\mathbf{2 7 . 6} \mathrm{cm}^{2}$
Theme: Geometry of Triangles (M-06-093) CODE BB69	Theme: Geometry of Triangles (M-06-093) CODE BB69
Lesson Title: Properties of Equilateral Triangles	Lesson Title: Properties of Equilateral Triangles
Solve the following word problem: Consider an equilateral triangle whose sides are 40 mm . a) What is the perimeter of the equilateral triangle? b) If the area is $320 \mathrm{~mm}^{2}$, find the height of the equilateral triangle .	Answer: a) $P=40 \mathrm{~mm}+40 \mathrm{~mm}+40 \mathrm{~mm}=\mathbf{1 2 0} \mathbf{m m}$ b) $A=\frac{1}{2} \times$ base \times peperndicular height $\begin{aligned} & 320 \mathrm{~mm}^{2}=\frac{1}{2} \times 40 \mathrm{~mm} \times \text { height } \\ & 640 \mathrm{~mm}^{2}=40 \mathrm{~mm} \times \text { height } \\ & \frac{640 \mathrm{~mm}^{2}}{40 \mathrm{~mm}}=\text { height } \end{aligned}$ Thus: height $=\mathbf{1 6} \mathbf{m m}$

