Theme: Everyday Arithmetic (M-08-056) CODE B1	Theme: Everyday Arithmetic (M-08-057) CODE B5	
Lesson Title: Personal Expenditure	Lesson Title: Income Tax	
What is income?		

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-08-064) CODE B25 \& Theme: Measurement and Estimation (M-08-067) CODE B29 \\
\hline Lesson Title: Perimeter and Area of Triangles \& Lesson Title: Perimeter and Area Story Problems \\
\hline Find the area and perimeter of the triangle: \& \begin{tabular}{l}
Bright Secondary School has a football field that measures 120 meters on one side and 80 meters on the other side. A gardener is hired to plant carpet grass on the field. \\
a. Calculate the area of the field. \\
b. If the cost of carpet grass is Le 200.00 per square meter, how much will it cost to cover the field?
\end{tabular} \\
\hline Theme: Measurement and Estimation (M-08-065) CODE B26 \& Theme: Measurement and Estimation (M-08-068) CODE B30 \\
\hline Lesson Title: Perimeter and Area of Circles \& Lesson Title: Volume of Solids \\
\hline Write down the formulas for calculating the circumference and area of a circle: \& Write the general formula for the volume of prisms and cylinders as cross-sections multiplied by height. \\
\hline Theme: Measurement and Estimation (M-08-065) CODE B27 \& Theme: Measurement and Estimation (M-08-069) CODE B31 \\
\hline Lesson Title: Perimeter and Area of Circles \& Lesson Title: Volume of Cubes \\
\hline Find the circumference and area of the circle, using \(\pi=\frac{22}{7}\) \& Find the volume of a cube of side 7 cm.
\[
21 / 2 \text { minutes }
\] \\
\hline Theme: Measurement and Estimation (M-08-066) CODE B28 \& Theme: Measurement and Estimation (\(\mathrm{M}-08-070\)) CODE B32 \\
\hline Lesson Title: Perimeter and Area of Composite Shapes \& Lesson Title: Volume of Rectangular Prisms \\
\hline Define composite shapes.

2 2 minutes \& Find the volume of the cuboid bellow: \\
\hline
\end{tabular}

Theme: Measurement and Estimation (M-08-071) CODE B33	Theme: Measurement and Estimation (M-08-075) CODE B37
Lesson Title: Volume of Triangular Prisms	Lesson Title: Surface Area of Solids
Find the volume of a rectangular prism with base 4 m , height 7 m , and length 3 m	Define the term surface area.
	1 minute
Theme: Measurement and Estimation (M-08-072) CODE B34	Theme: Measurement and Estimation (M-08-075) CODE B38
Lesson Title: Volume of Cylinders	Lesson Title: Surface Area of Solids
Find the volume of the figure. Use $\pi=\frac{22}{7}$	A rectangular prism has a length of 21 m , width of 20 m and height of 43 m . In what units is the surface area measured?
Theme: Measurement and Estimation (M-08-073) CODE B35	Theme: Measurement and Estimation (M-08-076) CODE B39
Lesson Title: Volume of Composite Solids	Lesson Title: Surface Area of Cubes and Rectangular Prisms
Find the volume of the solid shown:	Calculate the surface area for the rectangular prism: Hint: Use the formula: $S A=2 l w+2 w h+2 l h$
Theme: Measurement and Estimation (M-08-074) CODE B36	Theme: Measurement and Estimation (M-08-077) CODE B40
Lesson Title: Volume Story Problems	Lesson Title: Surface Area of Triangular Prisms
A carpenter built a box in the shape of a rectangular prism. The area of the bottom of the box is $42 \mathrm{~cm}^{2}$, and the box is 20 cm tall. How many cubic centimetres of seeds will the box be able to hold?	Find the surface area of the right-angled triangular prism: Hint: Use the formula: $S A=b h+(a+b+c) l$
$31 / 2$ minutes	

Theme: Measurement and Estimation (M-08-078) CODE B41
Lesson Title: Surface Area of Cylinders
Find the surface area of the cylinder shown below. Use
$\pi=\frac{22}{7}$ and give your answers to the nearest whole
number.

Theme: Geometry (M-08-085) CODE B49	Theme: Geomety (M-08-087) CODE B53
Lesson Title: Angle Practice	Lesson Title: Sum of the Interior Angles of a Pentagon
Calculate the size of x in the isosceles triangle below: Remember: An isosceles triangle has two equal angles. 2 minutes	Add the angles of the pentagon below to verify that they add up to 540°.
Theme: Geometry (M-08-086) CODE B50	Theme: Geometry (M-08-088) CODE B54
Lesson Title: Polygons	Lesson Titte: Sum of the Interior Angles of a Polygon
List any three types of regular polygons. $3 \text { minutes }$	Calculate the sum of the interior angles of a polygon with 8 sides Hint: Use the formula for the sum of interior angles
Theme: Geometry (M-08-086) CODE B51	Theme: Geometry (M-08-089) CODE B55
Lesson Title: Polygons	Lesson Title: Interior Angle Practice
Draw the following polygon. 5 Sides - pentagon	Find the measure of angle x :
Theme: Geometry (M-08-087) CODE B52	Theme: Geometry (M-08-990) CODE B56
Lesson Title: Sum of the Interior Angles of a Pentagon	Lesson Title: Interior Angle Story Problems
Write the formula for calculating the sum of the interior angles of a polygon.	Issa is building a house. He wants to build a strong one, and he knows the two angles between the roof and walls must be equal. Help him by finding the missing angles in the diagram of his house.
2 minutes	

Expand and simplify:
$2 a[(a+3 b)+4(2 a-b)]$

Theme: Algebra (M-08-113) CODE B82
Lesson Title: Algebraic Expression Story
Solve the following word problems:

1. Hawa is twice as old as Musa. If Musa is $x+3$ years old, write an expression for Hawa's age.
2. A man has $15 x$ sheep and $10 y$ goats. He sells $6 x$ sheep and $2 y$ goats. How many animals are left after the sales?

Theme: Algebra (M-08-114) CODE B83
Lesson Title: Factoring Integers from Algebraic Expressions

Factorise the following expressions:

1. $5 x^{3}+15 x^{2}+35 x+20$
2. $10 s+12 t-4 t$

Theme: Algebra (M-08-115) CODE B84
Lesson Title: Factoring Variables from Algebraic Expressions

Factorise the following expressions:
a. $x^{3}+5 x^{2}$
b. $9 a^{2}+13 a-3 a-4 a^{2}$

