Theme: Algebra ($\mathrm{M}-08-116$) CODEC1	Theme: Algebra (M-08-116) CODE C1
Lesson Title: Practice with Expansion	Lesson Title: Practice with Expansion
Remove the brackets and simplify the following algebraic expressions: 1. $3(2 v+3)$ 2. $x(4-x)$	Answer: 1. $\begin{aligned} & 3(2 v+3) \\ & =(3 \times 2 v)+(3 \times 3) \\ & =6 v+9 \end{aligned}$ 2. $\begin{aligned} & x(4-x) \\ & =(x \times 4)+(x \times-x) \\ & =4 x-x^{2} \end{aligned}$
2 minutes	
Theme: Algebra (M-08-117) CODE C2	Theme: Algebra (M-08-117) CODE C2
Lesson Title: Practice with Factorisation	Lesson Title: Practice with Factorisation
Complete the sentence: The factors of a number \qquad exactly into that number.	Answer: The factors of a number divide exactly into that number.
1 minute	
Theme: Algebra (M-08-117) CODE C3	Theme: Algebra (M-08-117) CODE C3
Lesson Title: Practice with Factorisation	Lesson Title: Practice with Factorisation
Factorise the expression below. Show how to check your answer. $3 x+12$	Answer: $3 x+12$ First, look for the HCF of the expression. This is the largest number which can divide $3 x$ and 12. $\begin{aligned} 3 x+12 & =3() & & \text { Factor the HCF, } 3 \\ & =3(x+4) & & \text { Divide each term in } 3 x+12 \text { by } 3 \end{aligned}$ Answer: $3(x+4)$ Check the answer by expanding the brackets: $\begin{aligned} 3(x+3) & =(3 \times x)+(3 \times 4) \\ & =3 x+12 \end{aligned}$
Theme: Algebra (M-08-118) CODE C4	Theme: Algebra (M-08-118) CODE C4
Lesson Title: Substitution with One Variable	Lesson Title: Substitution with One Variable
1. Find the value of $5-2 x$ if $x=4$. 2. Find the value of $3 x+8$ when $x=-5$.	Answer: 1. Substitute 4 for x and evaluate: $\begin{aligned} & =5-2(4) \\ & =-3 \end{aligned}$ 2. Substitute $x=-5$ and evaluate, applying BODMAS: $\begin{aligned} & =3 x+8=3(-5)+8 \\ & =-15+8 \\ & =-7 \end{aligned}$

Theme: Algebra (M-08-119) CODE C5	Theme: Algebra (M-08-119) CODE C5
Lesson Title: Substitution with Two Variables	Lesson Title: Substitution with Two Variables
If $x=-3$ and $y=4$, what is the value of $x+x y$?	Answer: Remember that two variables written together in a term (as in $x y$) means they are multiplied together. $\begin{aligned} x+x y & =3+(-3)(4) & & \text { Substitute } x=3 \text { and } y=4 \\ & =3-12 & & \text { Subtract } \\ & =-9 & & \end{aligned}$
$11 / 2$ minutes	
Theme: Algebra (M-08-120) CODE C6	Theme: Algebra (M-08-120) CODE C6
Lesson Title: Substitution Practice	Lesson Title: Substitution Practice
Evaluate $x-y+z$ when $x=4, y=-1$ and $z=2$.	Answer: $\begin{aligned} x-y+z & =(4)-(-1)+(2) \\ & =4+1+2 \\ & =7 \end{aligned}$
$11 / 2$ minutes	
Theme: Algebra (M-08-121) CODE C7	Theme: Algebra (M-08-121) CODE C7
Lesson Title: Linear Equations in One Variable	Lesson Title: Linear Equations in One Variable
	Answer:
Solve each of the linear equations for the variable:	
1. $z+7=9$	1. $z+7=9 \quad$ transpose 7 to solve for z $\mathrm{z}=2$
2. $4+a=-4$	2. $4+a=-4$ transpose 4 to solve for a $a=-8$
2 minutes	
Theme: Algebra (M-08-122) CODE C8	Theme: Algebra (M-08-122) CODE C8
Lesson Title: Solving Linear Equations I	Lesson Title: Solving Linear Equations I
Solve for the variable in the equation below.$60+x=15$	Answer:
	$60+x=15$
	To balance the equation, subtract 60 from both sides. $\begin{array}{ll} 60+x-60=15-60 & \text { Subtract } 60 \text { from both sides } \\ x+0=-45 & \text { Simplify } \\ x=-45 & \end{array}$

\begin{tabular}{|c|c|}
\hline Theme: Algebra (M-08-123) CODE C9 \& Theme: Algebra (M-08-123) CODE C9 \\
\hline Lesson Title: Solving Linear Equations II \& Lesson Title: Solving Linear Equations II \\
\hline \begin{tabular}{l}
Solve the following equations: \\
1. \(6 x=12\) \\
2. \(5 y=5\)
\end{tabular} \& \begin{tabular}{l}
Answer:
\[
\begin{aligned}
1.6 x \& =12 \\
\frac{6 x}{6} \& =\frac{12}{6} \\
x \& =2
\end{aligned}
\] \\
Divide both sides by 6 \\
2.
\[
\begin{aligned}
\& 5 y=5 \\
\& \frac{5 y}{5}=\frac{5}{5} \\
\& y=1
\end{aligned}
\] \\
Divide both sides by 5
\end{tabular} \\
\hline Theme: Algebra (M-08-124) CODE C10 \& Theme: Algebra (M-08-124) CODE C10 \\
\hline Lesson Title: Solving Linear Equations III \& Lesson Title: Solving Linear Equations III \\
\hline \begin{tabular}{l}
Solve:
\[
2(x+1)=6
\] \\
2 minutes
\end{tabular} \& \begin{tabular}{l}
Answer: \\
Remove the brackets before balancing the equation. \\
BODMAS
\[
\begin{array}{ll}
2(x+1)=6 \& \\
2 x+2=6 \& \text { Remove the brackets } \\
2 x+2-2=6-2 \& \text { Subtract } 2 \text { from both sides } \\
2 x=4 \& \\
\frac{2 x}{2}=\frac{4}{2} \& \text { Divide both sides by } 2 \\
x=2 \&
\end{array}
\]
\end{tabular} \\
\hline Theme: Algebra (M-08-126) CODE C11 \& Theme: Algebra (M-08-126) CODE C11 \\
\hline Lesson Title: Verifying Solutions \& Lesson Title: Verifying Solutions \\
\hline Is \(x=7\) a solution to the equation \(3 x+10=x-4 ?\)

3 minutes \& | Answer: |
| :--- |
| substitute $x=7$ and answer the question. $\begin{array}{\|ll} 3 x+10=x-4 & \text { Equation } \\ 3(7)+10=7-4 & \text { Substitute } \\ 21+10=3 & \text { Evaluate } \\ 31 \neq 3 & \\ \text { LHS } \neq \text { RHS } & \end{array}$ |
| No, $x=7$ is not a solution to the equation. |
| The left-hand side is not equal to the righthand side. | \\

\hline Theme: Algebra (M-08-128) CODE C12 \& Theme: Algebra (M-08-128) CODE C12 \\
\hline Lesson Title: Solving Linear Equations Story Problems I \& Lesson Title: Solving Linear Equations Story Problems I \\

\hline | Solve the following word problem: |
| :--- |
| Fatu is a baker. She is going to the market to buy sugar. |
| Sugar costs Le 2,000.00 per cup. She has Le 8,000.00 to spend on sugar. |
| a. Write a linear equation for the story, where s is cups of sugar. |
| b. Solve the linear equation to find how many cups of sugar Fatu can buy. | \& | Answer: |
| :--- |
| a. To find a linear equation, multiply s by the cost of 1 cup. Fatu spends 2,000 s on sugar. We also know that she spends 8,000 on sugar. |
| This gives the equation $2,000 \boldsymbol{s}=\mathbf{8 , 0 0 0}$. |
| b. Solve the linear equation for s $\begin{aligned} 2,000 s & =8,000 \\ \frac{2,000 s}{2,000} & =\frac{8,000}{2,000} \quad \text { Divide both sides by } 2,000 \\ s & =4 \end{aligned}$ |
| Fatu can buy 4 cups of sugar. | \\

\hline
\end{tabular}

Theme: Algebra (M-08-129) CODE C13	Theme: Algebra (M-08-129) CODE C13
Lesson Title: Solving Linear Equation Story Problems II	Lesson Title: Solving Linear Equation Story Problems II
Solve the following word problem: Three more than twice a certain number is nineteen. What is the number?	Answer: Write a linear equation based on the first sentence. Then solve the linear equation. Read the sentence carefully. Assign a variable to the "certain number", say x. $2 x+3=19$ Solve the equation for x : $\begin{aligned} & \begin{array}{l} 2 x+3-3=19-3 \\ 2 x=16 \\ \\ \frac{2 x}{2}=\frac{16}{2} \\ x=8 \end{array} \quad \text { Subtract } 3 \text { from both sides } \\ & \text { Thertain number is } 8 . \end{aligned}$
Theme: Algebra (M-08-130) CODE C14	Theme: Algebra (M-08-130) CODE C14
Lesson Title: Linear Equation Practice	Lesson Title: Linear Equation Practice
The ages of 4 friends are $x, x+3, x-1$ and $x+2$. a. Write an expression for the combined age of the friends. b. If their combined age is 44 years, what is the age of the youngest friend?	Answer: a. Combined age $=x+(x+3)+(x-1)+(x+2)$ $=4 x+4$ b. Set the expression equal to 44 to find x. $\begin{aligned} & 4 x+4=44 \\ & 4 x=40 \\ & \frac{4 x}{4}=\frac{40}{4} \\ & x=10 \end{aligned}$ Equation Divide both sides by 4 Use the value of x to find the age of each friend: $x-1=10-1=9$ The youngest friend is 9 years old
Theme: Algebra (M-08-131) CODE C15	Theme: Algebra (M-08-131) CODE C15
Lesson Title: Introduction to the Cartesian Plane	Lesson Title: Introduction to the Cartesian Plane
Sketch a Cartesian plane with axes from -10 to +10 . It is not necessary to measure intervals on the axes with a ruler.	Answer: x and y axes meet at 0 and are labelled x and y .
Theme: Algebra (M-08-132) CODE C16	Theme: Algebra (M-08-132) CODE C16
Lesson Title: Identifying Points in the Cartesian Plane	Lesson Title: Identifying Points in the Cartesian Plane
Identify which quadrant each of the following points is in: a. $(-3,2)$ b. $(-5,-7)$ c. $(1,-3)$	Answer: a. $(-3,2)$ is in quadrant II because both x is negative and y is positive. b. $(-5,-7)$ is in quadrant III because both x and y are negative. c. $(1,-3)$ is in quadrant IV because x is positive and y is negative.

Theme: Statistics and Probability (M-08-138) \quad CODE C21
Lesson Title: Bar Charts
The table below shows the marks of pupils in a test. No pupil
scored lower than 40% or higher than 85\%. Draw a bar chart
for the information using squared paper or your own paper.
Marks 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% Number of pupils 1 2 4 3 0 2 5 8 1 2

The table below shows the marks of pupils in a test. No pupil scored lower than 40% or higher than 85%. Draw a bar chart for the information using squared paper or your own paper.

3 minutes
Theme: Statistics and Probability (M-08-139) CODE C22

Lesson Title: Line Graphs

The table below shows daily temperatures for London,
recorded for 6 days in degrees Celsius. Display the data in
line graph. Use 15 to 25 degrees to mark the y-axis.

Day	1	2	3	4	5	6
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	17	19	18	16	21	23

$31 / 2$ minutes

a. What was the lowest score on the test?
b. If pupils need 7 marks or higher to pass, how many pupils passed the test?

2 minutes

| Theme: S Statistics and Probability (M-08-141) \quad CODEC24 | Theme: \quad Statistics and Probability (M-08-141) | CODE C24 |
| :--- | :--- | :--- | :--- |
| Lesson Title: Mean | | Lesson Title: Mean |
| | Answer | |

The number of goals scored by a team in 9 football matches are as follows:

$$
3,5,7,7,8,8,8,11,15
$$

Calculate the mean number of goals scored.

Lesson Title: Bar Charts
Answer:

Theme: Statistics and Probability (M-08-139) CODE C22
Lesson Title: Line Graphs
Answer:
Temperatures in London:
Temperature in London

Theme: Statistics and Probability (M-08-140) CODE C23
Lesson Title: Interpreting Charts and Graphs
Answer:
a. 1 mark
b. $10+8+7+3=28$ pupils

Answer:

Find the mean by adding the number of goals scored, and dividing by the number of football matches:

Mean $=\frac{3+5+7+7+8+8+8+11+15}{9}$

$$
=\frac{72}{9}
$$

$$
=8
$$

The mean number of goals scored is 8 .

Theme: Statistics and Probability (M-08-142) CODE C25	Theme: Statistics and Probability (M-08-142) CODE C25
Lesson Title: Median	Lesson Title: Median
The shoe sizes of five pupils are $10,9,10,11$ and 8 . Find the median shoe size.	Answer: List the numbers in ascending order: $8,9,10,10,11$ Identify the middle of the list: 10 The median shoe size of the five pupils is 10 .
Theme: Statistics and Probability (M-08-143) CODE C26	Theme: Statistics and Probability (M-08-143) CODE C26
Lesson Title: Mode and Range	Lesson Title: Mode and Range
John is a doctor. Today, he treated 10 children. He recorded the weight of each child in kilograms, listed below. Find the mode and range of their weights. $14,20,17,21,15,13,20,19,15,12$	Answer: Write the numbers in ascending order: $12,13,14,15,15,17,19,20,20,21$ Mode: The mode is the number that appears most often. The numbers 15 and 20 both appear 2 times. Therefore, there are 2 modes: 15 and 20 kg . Range: Subtract the lowest number from the highest number: $21-12=9$. The range is 9 kg .
Theme: Statistics and Probability (M-08-144) CODE C27	Theme: Statistics and Probability (M-08-144) CODE C27
Lesson Title: Interpreting Pie Charts	Lesson Title: Interpreting Pie Charts
Aminata earned Le 2,000,000.00 by selling goods in her shop. The pie chart below shows the percentage that Aminata earned this week in each category of goods. How much did Aminata earn from electronics?	Answer: To find how much she earned from electronics, find 15% of Le 2,000,000.00. Earned from electronics $\begin{aligned} \text { Earned from electronics } & =\frac{15}{100} \times L e 2000000 \\ & =0.15 \times L e 2000000 \\ & =L e 300,000 \end{aligned}$
Theme: Statistics and Probability (M-08-144) CODE C28	Theme: Statistics and Probability (M-08-144) CODE C28
Lesson Title: Interpreting Pie Charts	Lesson Title: Interpreting Pie Charts
Please refer to the information and diagram in CODE C27 to answer the following questions: a. From which category of goods did Aminata earn the least amount of money? b. How much more did Aminata earn from tools than from electronics?	Answer: a. Aminata earned the least amount of money from miscellaneous b. Earned $\begin{aligned} & \text { tools }=\frac{55}{100} \times \text { Le } 2,000,000 \\ & \quad=0.55 \times \text { Le } 2,000,000 \\ & \quad=\text { Le } 1,100,000 \end{aligned}$ Aminata earned Le 300,000 from electronic sales and hence: $\begin{aligned} \text { difference: }= & 1,100,000-300,0000 \\ & =\text { Le 800,000 } \end{aligned}$

