Theme: Everyday Arithmetic (M-08-056) CODE B1	Theme: Everyday Arithmetic (M-08-056) CODE B1
Lesson Title: Personal Expenditure	Lesson Titte: Personal Expenditure
What is income?	Answer: An income is the money you receive, usually when you are paid to do work.
Theme: Everyday Arithmetic (M-08-056) CODE B2	Theme: Everyday Arithmetic (M-08-056) CODE B2
Lesson Title: Personal Expenditure	Lesson Titte: Personal Expenditure
What is a personal expenditure?	Answer: A personal expenditure is the amount of money you spend yourself. Some personal expenditures are food, clothing, and entertainment.
Theme: Everyday Arithmetic (M-08-056) CODE B3 1 minute	Theme: Everyday Arithmetic (M-08-056) CODE B3
Lesson Title: Personal Expenditure	Lesson Titte: Personal Expenditure
Write down the formula for calculating Percentage of income	Answer: $\text { Percentage of income }=\frac{\text { expenditure }}{\text { income }} \times 100 \%$
Theme: Everyday Arithmetic (M-08-056) CODE B4	Theme: Everyday Arithmetic (M-08-056) CODE B4
Lesson Title: Personal Expenditure	Lesson Title: Personal Expenditure
Mohamed earns Le $8,000,000.00$ each month. He spends Le $400,000.00$ each month on electricity. What percentage of his income does he spend on electricity?	Answer: $\begin{aligned} \text { Percentage of Income } & =\frac{\text { Expenditure }}{\text { Income }} \times 100 \% \\ & =\frac{400,000}{8,0000000} \times 100 \% \\ & =\frac{4}{80} \times 100 \% \\ & =\frac{1}{20} \times 100 \% \\ & =5 \% \end{aligned}$
3 minutes	

\begin{tabular}{|c|c|}
\hline Theme: Everyday Arithmetic (M-08-057) CODE B5 \& Theme: Everyday Arithmetic (M-08-057) CODE B5 \\
\hline Lesson Title: Income Tax \& Lesson Title: Income Tax \\
\hline What are taxes?

1 minute \& | Answer: |
| :--- |
| Taxes are how a government raises money to cover public costs. For example, tax money pays for hospitals, roads, and schools. |
| Furthermore, income tax is an amount that people pay from the money they earn working. | \\

\hline Theme: Everyday Arithmetic (M-08-057) CODE B6 \& Theme: Everyday Arithmetic (M-08-057) CODE B6 \\
\hline Lesson Title: Income Tax \& Lesson Title: Income Tax \\

\hline Write down the formula for calculating income tax \& | Answer: |
| :--- |
| Income tax $=$ income \times tax rate |
| Where, tax rate is given as a percentage. |
| For example, $10 \%=\frac{10}{100}$ | \\

\hline Theme: Everyday Arithmetic (M-08-057) CODE B7 Lesson Title: Income Tax \& Theme: Everyday Arithmetic (M-08-057) CODE B7 Lesson Title: Income Tax \\

\hline | Solve the following word problem: |
| :--- |
| Martin's income is Le 14,500,000.00 per year. His income tax rate is 12%. How much income tax must he pay for one year? | \& | Answer: |
| :--- |
| Step 1: Convert tax rate into fraction. $12 \%=\frac{12}{100}$ |
| Step 2: Calculate income tax. $\begin{aligned} \text { Income tax } & =\text { income } \times \text { tax rate } \\ & =14,500,000.00 \times \frac{12}{100} \\ & =145,000 \times 12 \\ & =1,740,000 \end{aligned}$ |
| Martin will pay Le $1,740,000.00$ in income tax for 1 year. | \\

\hline Theme: Everyday Arithmetic (M-08-058) CODE B8 \& Theme: Everyday Arithmetic (M-08-058) CODE B8 \\
\hline Lesson Title: Sales Tax \& Lesson Title: Sales Tax \\

\hline Define sales tax \& | Answer: |
| :--- |
| Sales tax is an amount that people pay when they buy something from a store. It can also be called "goods and services tax" (GST). | \\

\hline 1 minute \& \\
\hline
\end{tabular}

Theme: Everyday Arithmetic (M-08-058) CODE B9	Theme: Everyday Arithmetic (M-08-058) CODE B9
Lesson Title: Sales Tax	Lesson Title: Sales Tax
Write down the formula for calculating sales tax	Answer: Sales tax $=$ cost of the item \times tax rate
Theme: Everyday Arithmetic (M-08-059) CODE B10	Theme: Everyday Arithmetic (M-08-059) CODE B10
Lesson Title: Time and Duration	Lesson Title: Time and Duration
Convert the following times to the 12 -hour clock: 1. $05: 00$ 2. $16: 00$	Answer: 1. $05: 00=5 \mathrm{am}$ 2. Subtract 12 from the hours: $16-12=4 \mathrm{pm}$
Theme: Everyday Arithmetic (M-08-059) CODE B11	Theme: Everyday Arithmetic (M-08-059) CODE B11
Lesson Title: Time and Duration	Lesson Title: Time and Duration
Solve the following word problem: Fatu started working at 9:00 am. She worked for 3 hours and 30 minutes. At what time did she finish working?	Answer: Add the hours and minutes separately: $9: 00 \mathrm{am}+3: 30=12: 30 \mathrm{pm}$ She finished working at 12:30 pm
Theme: Everyday Arithmetic (M-08-060) CODE B12	Theme: Everyday Arithmetic (M-08-060) CODE B12
Lesson Title: Classification of Decimal Numbers	Lesson Title: Classification of Decimal Numbers
Solve the following word problem: Ama has a maths exam tomorrow. She studied in the morning from 7 am to 8:30 am. She studied again in the afternoon from 2:30 to 3:15. How much time did she spend studying all together?	Answer: Ama had two sessions - Time spent studying in the morning: $7: 00-8: 30=1: 30$. She spent 1 hour and 30 minutes. - Time spent studying in the afternoon: $2: 30-3: 15=0: 45$. She spent 45 minutes. Total time spent studying: 1 hour 30 minutes +45 minutes $=1$ hour 75 minutes $=2$ hours 15 minutes Answer: Ama spent 2 hours and 15 minutes studying.

Theme: Measurement and Estimation (M-08-002) CODE B17
Lesson Title: Perimeter and Area of Parallelograms
Define a parallelogram.

Theme: Measurement and Estimation (M-08-063) CODE B21	Theme: Measurement and Estimation (M-08-063) CODE B21		
Lesson Title: Perimeter and Area of Trapeziums	Lesson Title: Perimeter and Area of Trapeziums		
Define a trapezium. $\begin{aligned} & \\ & \\ & \\ & 1 \text { minute }\end{aligned}$	Answer: A trapezium 2 sides are	drilateral with 2 pa el.	lel sides. The other
Theme: Measurement and Estimation (M-08-063) CODE B22	Theme: Measurement and Estimation (M-08-063) CODE B22		
Lesson Title: Perimeter and Area of Trapeziums	Lesson Title: Perimeter and Area of Trapeziums		
Write down the formulas for calculating the perimeter and area of a trapezium:	Answer:		
	Shape	Perimeter	Area
	Trapezium	$P=a+b+c+d$	$A=\frac{1}{2}(a+b) h$
2 minutes			

Theme: Measurement and Estimation (M-08-063) CODE B23	Theme: Measurement and Estimation (M-08-063) CODE 323		
Lesson Title: Perimeter and Area of Trapeziums	Lesson Title: Perimeter and Area of Trapeziums		
Find the perimeter and area of the trapezium below:	Answer: 1. perimeter: add all the lengths of sides $\begin{aligned} P & =a+b+c+d \\ & =50+36+41+80 \\ & =207 \mathrm{~mm} \end{aligned}$		
Theme: Measurement and Estimation (M-08-064) CODE B24	Theme: Measurement and Estimation (M-08-064) CODE B24		
Lesson Title: Perimeter and Area of Triangles	Lesson Title: Perimeter and Area of Triangles		
Write down the formulas for calculating the perimeter and area of a triangle:	Answer:		
	Shape	Perimeter	Area
	Triangle	$P=a+b+c$	$\mathrm{A}=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$

Theme: Measurement and Estimation (M-08-064) CODE B25	Theme: Measurement and Estimation (M-08-064) CODE B25
Lesson Title: Perimeter and Area of Triangles	Lesson Title: Perimeter and Area of Triangles
Find the area and perimeter of the triangle:	Answer: 1. $\begin{array}{rlr} \text { rea: } A=\frac{1}{2} \times b \times h & \\ =\frac{1}{2} \times 8 \times 14 & \text { Substitute values } \\ =\frac{1}{2} \times(112) & \text { Simplify } \\ =56 \mathrm{~cm}^{2} & \end{array}$ 2. perimeter: add all the lengths of sides $\begin{aligned} P= & a+b+c \\ & =16+15+8=39 \mathrm{~cm} \end{aligned}$
$31 / 2$ minutes \quad	
Lesson Title: Perimeter and Area of Circles	Lesson Title: Perimeter and Area of Circles
Write down the formulas for calculating the circumference and area of a circle:	Answer:
	Shape ${ }^{\text {Circumference }}$ Area
	Circle $\quad \mathrm{C}=2 \pi r \quad \mathrm{~A}=\pi \mathrm{r}^{2}$
	Where: $r=$ radius of the Circle $\pi=\frac{22}{7}$
2 minutes	
Theme: Measurement and Estimation (M-08-065) CODE B27	Theme: Measurement and Estimation (M-08-065) CODE B27
Lesson Title: Perimeter and Area of Circles	Lesson Title: Perimeter and Area of Circles
Find the circumference and area of the circle, using $\pi=\frac{22}{7}$	Answer: 1. circumference: $\begin{aligned} & C=2 \pi r \\ & =2 \times 28 \times \frac{22}{7} \quad \text { Substitute values } \\ & =176 \mathrm{~m} \end{aligned}$ 2. area: $\begin{aligned} & A=\pi r^{2} \\ & =\frac{22}{7} \times 28^{2} \\ & =\frac{22}{7} \times 784 \\ & =22 \times 112 \\ & =2464 \mathrm{~m}^{2} \end{aligned}$ Substitute values Simplify Cancel 7
Theme: Measurement and Estimation (M-08-066) CODE B28	Theme: Measurement and Estimation (M-08-066) CODE B28
Lesson Title: Perimeter and Area of Composite Shapes	Lesson Title: Perimeter and Area of Composite Shapes
Define composite shapes.	Answer: Composite shapes are shapes made up of one or more different types of shapes. They can be made up of a combination of circles, triangles, rectangles, and other polygons.
2 minutes	

Theme: Measurement and Estimation (M-08-067) CODE B29	Theme: Measurement and Estimation (M-08-067) CODE B29
Lesson Title: Perimeter and Area Story Problems	Lesson Title: Perimeter and Area Story Problems
Bright Secondary School has a football field that measures 120 meters on one side and 80 meters on the other side. A gardener is hired to plant carpet grass on the field. a. Calculate the area of the field. b. If the cost of carpet grass is Le 200.00 per square meter, how much will it cost to cover the field?	Answer: First, draw a diagram. \rightarrow a. Calculate the area of the field. $\begin{aligned} A & =l \times w \\ & =120 \mathrm{~m} \times 80 \mathrm{~m} \\ & =9,600 \mathrm{~m}^{2} \end{aligned}$ b. Find the cost. Multiply the cost per square meter by the number of square meters. $\begin{aligned} \text { Cost } & =9,600 \times \text { Le } 200 \\ & =\text { Le } 1,920,000.00 \end{aligned}$
Theme: Measurement and Estimation (M-08-068) CODE B30	Theme: Measurement and Estimation (M-08-068) CODE B30
Lesson Title: Volume of Solids	Lesson Title: Volume of Solids
Write the general formula for the volume of prisms and cylinders as cross-sections multiplied by height. 2 minutes	Answer: Rectangular Prism: $V=l \times w \times h$ or $V=A \times h$ where l is length, w is width and h is height Cylinder: $\mathrm{V}=\pi \mathrm{r}^{2}$ or $V=A \times h$ where r is radius and h is height
Theme: Measurement and Estimation (M-08-069) CODE B31	Theme: Measurement and Estimation (M-08-069) CODE B31
Lesson Title: Volume of Cubes	Lesson Title: Volume of Cubes
Find the volume of a cube of side 7 cm. 2112 minutes	Answer:
Theme: Measurement and Estimation (M-08-070) CODE B32	Theme: Measurement and Estimation (M-08-070) CODE B32
Lesson Title: Volume of Rectangular Prisms	Lesson Title: Volume of Rectangular Prisms
Find the volume of the cuboid bellow:	Answer: First identify the length (l), width (w) and height (h) of the cuboid. $\begin{array}{rlrl} l & =13 \mathrm{~m}, w=2 \mathrm{~m}, h=3 \mathrm{~m} \\ V & =l w h & & \text { formula } \\ & =13 \times 2 \times 3 & & \text { substitute the values } \\ & =78 \mathrm{~m}^{3} & & \end{array}$

Theme: Measurement and Estimation (M-08-071) CODE B33	Theme: Measurement and Estimation (M-08-071) CODE B33
Lesson Title: Volume of Triangular Prisms	Lesson Title: Volume of Triangular Prisms
Find the volume of a rectangular prism with base 4 m , height 7 m , and length 3 m	Answer: $\begin{aligned} V & =\frac{1}{2} b h l & & \text { formula } \\ & =\frac{1}{2} \times 4 \times 7 \times 3 & & \text { substitute the values } \\ & =\frac{1}{2} \times 84 & & \text { multiply } \\ & =42 \mathrm{~cm}^{3} & & \end{aligned}$
Theme: Measurement and Estimation (M-08-072) CODE B34	Theme: Measurement and Estimation (M-08-072) CODE B34
Lesson Title: Volume of Cylinders	Lesson Title: Volume of Cylinders
Find the volume of the figure. Use $\pi=\frac{22}{7}$	Answer: $\begin{aligned} V & =\pi r^{2} h & & \text { formula } \\ & =\frac{22}{7} \times(7)^{2} \times 10 & & \text { substitute the values } \\ & =\frac{22}{7} \times 490 & & \text { multiply } \\ & =1540 \mathrm{~cm}^{3} & & \end{aligned}$
Theme: Measurement and Estimation (M-08-073) CODE B35	Theme: Measurement and Estimation (M-08-073) CODE B35
Lesson Title: Volume of Composite Solids	Lesson Title: Volume of Composite Solids
Find the volume of the solid shown: $31 / 2$ minutes	Answer: Find the volume of the cube $\left(\mathrm{V}_{1}\right)$ and the volume of the rectangular prism $\left(\mathrm{V}_{2}\right)$ separately, then add them to find the total volume (V). Volume of cube: $\begin{aligned} \mathrm{V}_{1} & =l^{3} \\ & =(3)^{3} \\ & =3 \times 3 \times 3 \\ & =27 \mathrm{~cm}^{3} \end{aligned}$ Total volume: $\begin{aligned} V & =\mathrm{V}_{1}+\mathrm{V}_{2} \\ & =27 \mathrm{~cm}^{3}+54 \mathrm{~cm}^{3}=81 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} V_{2} & =l w h \\ & =6 \times 3 \times 3 \\ & =54 \mathrm{~cm}^{3} \end{aligned}$
Theme: Measurement and Estimation (M-08-074) CODE B36	Theme: Measurement and Estimation (M-08-074) CODE B36
Lesson Title: Volume Story Problems	Lesson Title: Volume Story Problems
A carpenter built a box in the shape of a rectangular prism. The area of the bottom of the box is $42 \mathrm{~cm}^{2}$, and the box is 20 cm tall. How many cubic centimetres of seeds will the box be able to hold?	Answer: First, draw a diagram. Apply the volume formula: $\begin{aligned} \mathrm{V} & =A \times h \\ & =42 \mathrm{~cm}^{3} \times 20 \mathrm{~cm}=840 \mathrm{~cm}^{3} \end{aligned}$

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-08-075) CODE B37 \& Theme: Measurement and Estimation (M-08-075) CODE B37 \\
\hline Lesson Title: Surface Area of Solids \& Lesson Title: Surface Area of Solids \\
\hline Define the term surface area.

1 minute \& | Answer: |
| :--- |
| Surface area is the outside layer of a solid. | \\

\hline Theme: Measurement and Estimation (M-08-075) CODE B38 \& Theme: Measurement and Estimation (M-08-075) CODE B38 \\
\hline Lesson Title: Surface Area of Solids \& Lesson Title: Surface Area of Solids \\

\hline | A rectangular prism has a length of 21 m , width of 20 m and height of 43 m . |
| :--- |
| In what units is the surface area measured? | \& | Answer: |
| :--- |
| Surface area is measured in units squared. |
| The surface area of this rectangular prism is measured in m^{2}. |
| This is read as "square metres" or "metres squared". | \\

\hline Theme: Measurement and Estimation (M-08-076) CODE B39 \& Theme: Measurement and Estimation (M-08-076) CODE B39 \\
\hline Lesson Title: Surface Area of Cubes and Rectangular Prisms \& Lesson Title: Surface Area of Cubes and Rectangular Prisms \\

\hline | Calculate the surface area for the rectangular prism: |
| :--- |
| Hint: Use the formula: $S A=2 l w+2 w h+2 l h$ | \& | Answer: |
| :--- |
| First identify the length (l), width (w) and height (h) of the prism. $l=13 \mathrm{~m}, w=2 \mathrm{~m}, h=3 \mathrm{~m}$ |
| surface area for the rectangular prism: $\begin{aligned} S A & =2 l w+2 w h+2 l h & & \text { formula } \\ & =2(13)(2)+2(2)(3)+2(13)(3) & & \text { substitute the values } \\ & =52+12+78 & & \text { multiply } \\ & =142 \mathrm{~m}^{2} & & \end{aligned}$ | \\

\hline Theme: Measurement and Estimation (M-08-077) CODE B40 \& Theme: Measurement and Estimation (M-08-077) CODE B40 \\
\hline Lesson Title: Surface Area of Triangular Prisms \& Lesson Title: Surface Area of Triangular Prisms \\

\hline | Find the surface area of the right-angled triangular prism: |
| :--- |
| Hint: Use the formula: $S A=b h+(a+b+c) l$ | \& | Answer: |
| :--- |
| First identify the values of $\mathbf{a}, \boldsymbol{b}, \mathbf{c}$, length (l), base (b) and height h) of the prism. $\mathrm{a}=3 \mathrm{~m}, b=4 \mathrm{~m}, \mathrm{c}=5 \mathrm{~m}, l=10 \mathrm{~m}, h=3 \mathrm{~m}$ |
| surface area of the triangular prism: $\begin{aligned} S A & =b h+(a+b+c) l & & \text { formula } \\ & =(4)(3)+(3+4+5) 10 & & \text { substitute the values } \\ & =12+(12)(10) & & \text { simplify } \\ & =12+120=132 \mathrm{~m}^{2} & & \end{aligned}$ | \\

\hline
\end{tabular}

Theme: Measurement and Estimation (M-08-078) CODE B41	Theme: Measurement and Estimation (M-08-078) CODE B41
Lesson Title: Surface Area of Cylinders	Lesson Title: Surface Area of Cylinders
Find the surface area of the cylinder shown below. Use $\pi=\frac{22}{7}$ and give your answers to the nearest whole number. Hint: Use the formula: $S A=2 \pi r^{2}+2 \pi r h$	Answer: surface area of cylinder: $\begin{aligned} S A & =2 \pi r^{2}+2 \pi r h & & \text { formula } \\ & =2\left(\frac{22}{7}\right)(7)^{2}+2\left(\frac{22}{7}\right)(7)(10) & & \text { substitute the values } \\ & =308+440 & & \text { simplify } \\ & =748 \mathrm{~cm}^{2} & & \end{aligned}$
Theme: Measurement and Estimation (M-08-080) CODE B42	Theme: Measurement and Estimation (M-08-080) CODE B42
Lesson Title: Surface Area Story Problems	Lesson Title: Surface Area Story Problems
An open cylindrical tank has a radius of 3 metres and a height of 2 metres. Find its surface area to the nearest whole number. (Use $\pi=3.14$)	Answer: $\begin{aligned} S A & =2 \pi r^{2}+2 \pi r h \\ & =2(3.14)(3)^{2}+2(3.14)(3)(2) \\ & =56.52+37.68 \\ & =94.2 \end{aligned}$ formula substitute the values multiply The surface area of the cylindrical tank to the nearest whole number is $94 \mathrm{~m}^{2}$
Theme: Geomety (M-08-081) CODE B43	Theme: Geometry (M-08-081) CODE B43
Lesson Title: Introduction to Angles	Lesson Title: Introduction to Angles
Describe the five types of angles: 1. acute 2. obtuse 3. right 4. straight 5. reflex	Answer: 1. An acute is an angle less than 90°. 2. A right angle is an angle that is exactly 90°. 3. An obtuse angle is an angle that is greater than 90°, but less than 180°. 4. A straight angle is an angle that is exactly 180°. 5. A reflex angle is an angle greater than 180°, but less than 360°.
Theme: Geomety (M-08-081) CODE B44	Theme: Geometry (M-08-081) CODE B44
Lesson Title: Introduction to Angles	Lesson Title: Introduction to Angles
Write the following angle measurements in words: 1. 104° 2. 180°	Answer: 1. One hundred and four degrees. 2. One hundred and eighty degrees.
1 minute	

\begin{tabular}{|c|c|}
\hline Theme: Geometry (M-08-082) CODE B45 \& Theme: Geometry (M-08-082) CODE B45 \\
\hline Lesson Title: Measurement of Angles \& Lesson Title: Measurement of Angles \\
\hline Estimate the measure of the given angle: \& \begin{tabular}{l}
Answer: \\
The measure of the angle is \(\angle X O Y=40^{\circ}\)
\end{tabular} \\
\hline Theme: Geometry (M-08-083) CODE B46 \& Theme: Geometry (M-08-083) CODE B46 \\
\hline Lesson Title: Finding Unknown Angles in Triangles \& Lesson Title: Finding Unknown Angles in Triangles \\
\hline Define the interior angles of a triangle.

2 2 minutes \& | Answer: |
| :--- |
| Interior angles are angles that are inside the triangle. The sum of these angles is 180°. |
| For example, the angles a, b and c are called interior angles of the triangle below. |
| And: $a+b+c=180^{\circ}$. | \\

\hline Theme: Geometry (M-08-083) CODE B47 \& Theme: Geometry (M-08-083) CODE B47 \\
\hline Lesson Title: Finding Unknown Angles in Triangles \& Lesson Title: Finding Unknown Angles in Triangles \\

\hline Find the measure of the angle marked x in the triangle below: \& | Answer: |
| :--- |
| The sum of the interior angles of a triangle is 180°. $\begin{aligned} & x+60^{\circ}+53^{\circ}=180^{\circ} \\ & x+113^{\circ}=180^{\circ} \\ & x=180^{\circ}-113^{\circ} \\ & x=67^{\circ} \end{aligned}$ | \\

\hline Theme: Geometry (M-08-084) CODE B48 \& Theme: Geometry (M-08-084) CODE B48 \\
\hline Lesson Title: Finding Unknown Angles in Quadrilaterals \& Lesson Title: Finding Unknown Angles in Quadrilaterals \\

\hline Find the measures of angles B, C and D in the parallelogram: \& | Answer: |
| :--- |
| Note that $C=A$ because they are opposite angles in a parallelogram. Thus, $C=148^{\circ}$. B and D are unknown angles. $\begin{aligned} & A+B+C+D=360^{\circ} \\ & 148^{\circ}+B+148^{\circ}+D=360^{\circ} \\ & B+D+296^{\circ}=360^{\circ} \\ & B+D=360^{\circ}-296^{\circ} \\ & B+D=64^{\circ} \quad \text { NOTE: } \mathrm{B}=\mathrm{D} \text { (opp angles of parallelogram) } \\ & 2 B=360^{\circ}-296^{\circ} \\ & \text { Hence: } 2 \mathrm{~B}=64^{\circ} \\ & \rightarrow \mathrm{B}=32^{\circ} \text { and } \mathrm{D}=32^{\circ} \end{aligned}$ | \\

\hline
\end{tabular}

Theme: Geomety (M-08-085) CODE B49	Theme: Geometry (M-08-085) CODE B49
Lesson Title: Angle Practice	Lesson Title: Angle Practice
Calculate the size of x in the isosceles triangle below: Remember: An isosceles triangle has two equal angles. 2 minutes	Answer: $\begin{aligned} & x=x \quad \text { equal angles of the isosceles triangle } \\ & x+x+100^{\circ}=180^{\circ} \\ & 2 x=180^{\circ}-100^{\circ} \\ & 2 x=80^{\circ} \\ & \frac{2}{2} x=\frac{80^{\circ}}{2} \quad \text { divide both sides of the equation by } 2 \\ & x=40^{\circ} \end{aligned}$
Theme: Geomety (M-08-086) CODE B50	Theme: Geometry (M-08-086) CODE B50
Lesson Title: Polygons	Lesson Title: Polygons
List any three types of regular polygons. 3 minutes	Answer: 1. 5 Sides - pentagon 2. 6 Sides - hexagon 3. 4 Sides - quadrilateral
Theme: Geometry (M-08-086) CODE B51	Theme: Geometry (M-08-086) CODE B51
Lesson Title: Polygons	Lesson Title: Polygons
Draw the following polygon. 5 Sides - pentagon	Answer: 5 Sides - Pentagon
Theme: Geometry (M-08-087) CODE B52	Theme: Geometry (M-08-087) CODE B52
Lesson Title: Sum of the Interior Angles of a Pentagon	Lesson Title: Sum of the Interior Angles of a Pentagon
Write the formula for calculating the sum of the interior angles of a polygon.	Answer: Sum of interior angles $=180^{\circ}(n-2)$, where n is the number of sides
2 minutes	

Theme: Geometry (M-08-087) CODE B53	Theme: Geometry (M-08-087) CODE B53
Lesson Title: Sum of the Interior Angles of a Pentagon	Lesson Title: Sum of the Interior Angles of a Pentagon
Add the angles of the pentagon below to verify that they add up to 540°.	Answer: Add the measures of the angles: $120^{\circ}+120^{\circ}+105^{\circ}+115^{\circ}+80^{\circ}=540^{\circ}$ The sum of the angles of the pentagon is 540°.
Theme: Geometry (M-08-088) CODE B54	Theme: Geometry (M-08-088) CODE B54
Lesson Title: Sum of the Interior Angles of a Polygon	Lesson Title: Sum of the Interior Angles of a Polygon
Calculate the sum of the interior angles of a polygon with 8 sides Hint: Use the formula for the sum of interior angles	Answer: Substitute $n=8$ in the formula and solve: Sum of angles $=(n-2) \times 180^{\circ}$ $\begin{aligned} & =(8-2) \times 180^{\circ} \\ & =6 \times 180^{\circ} \\ & =1080^{\circ} \end{aligned}$
Theme: Geometry (M-08-089) CODE B55	Theme: Geometry (M-08-089) CODE B55
Lesson Title: Interior Angle Practice	Lesson Title: Interior Angle Practice
Find the measure of angle x :	Answer: There are 6 sides and 6 angles in this polygon, which make it a pentagon. The sum of the angles of a pentagon is 720°. Subtract the known angles from 720° : $\begin{aligned} x & =720^{\circ}-120^{\circ}-115^{\circ}-100^{\circ}-135^{\circ}-125^{\circ} \\ & =125^{\circ} \end{aligned}$
Theme: Geometry (M-08-090) CODE B56	Theme: Geometry (M-08-090) CODE B56
Lesson Title: Interior Angle Story Problems	Lesson Title: Interior Angle Story Problems
Issa is building a house. He wants to build a strong one, and he knows the two angles between the roof and walls must be equal. Help him by finding the missing angles in the diagram of his house.	Answer: His house is in the shape of a pentagon. Remember that the sum of the angles in a pentagon is 540°. First, subtract the 3 known angles. Because the last 2 angles are equal, then divide by 2. Subtract the known angles: $540^{\circ}-124^{\circ}-90^{\circ}-90^{\circ}=$ 236 ${ }^{\circ}$ Divide by 2 to find the measure of each angle: $236^{\circ} \div 2=118^{\circ}$ The measure of each missing angle is 118°.

Theme: Algebra (M-08-112) CODE B81	Theme: Algebra (M-08-112) CODE B81
Lesson Title: Simplifying and Expanding Algebraic Expressions	Lesson Titte: Simplifying and Expanding Algebraic Expression
Expand and simplify: $2 a[(a+3 b)+4(2 a-b)]$	Answer: Hint: Use BODMAS $\begin{aligned} & 2 a[(a+3 b)+4(2 a-b)] \\ & =2 a(a+3 b+8 a-4 b) \\ & =2 a(a+8 a+3 b-4 b) \\ & =2 a(9 a-b) \\ & =18 a^{2}-2 a b \end{aligned}$
Theme: Algebra (M-08-113) CODE B82	Theme: Algebra (M-08-113) CODE B82
Lesson Title: Algebraic Expression Story	Lesson Title: Algebraic Expression Story
Solve the following word problems: 1. Hawa is twice as old as Musa. If Musa is $x+3$ years old, write an expression for Hawa's age. 2. A man has $15 x$ sheep and $10 y$ goats. He sells $6 x$ sheep and $2 y$ goats. How many animals are left after the sales?	Answer: 1. Musa's age $=2(x+3)$ $=2 x+6$ animals sold $\text { 2. } \begin{aligned} \text { Total animals left } & =15 x+10 y-(6 x+2 y) \\ & =9 x+8 y \end{aligned}$
Theme: Algebra (M-08-114) CODE B83	Theme: Algebra (M-08-114) CODE B83
Lesson Title: Factoring Integers from Algebraic Expressions	Lesson Title: Factoring Integers from Algebraic Expressions
Factorise the following expressions: 1. $5 x^{3}+15 x^{2}+35 x+20$ 2. $10 s+12 t-4 t$	Answer: $\begin{array}{ll}\text { 1. } 5 x^{3}+15 x^{2}+35 x+20=5() & \text { take out the HCF, } 5 \\ =5\left(x^{3}+3 x^{2}+7 x+4\right) & \text { divide each term by } 5\end{array}$ 2. $10 s+12 t-4 t=2()$ take out the HCF, 2 $=2(5 s+6 t-2 t)$ divide each term by 2
2 minutes	
Theme: Algebra (M-08-115) CODE B84	Theme: Algebra (M-08-106) CODE B84
Lesson Title: Factoring Variables from Algebraic Expressions	Lesson Title: Simplifying Algebraic Expressions
Factorise the following expressions: a. $x^{3}+5 x^{2}$	Answer: a. $x^{3}+5 x^{2}=x^{2}()$ the HCF is x^{2} $=x^{2}(x+5) \quad$ divide each term by x^{2}
b. $9 a^{2}+13 a-3 a-4 a^{2} \quad 3$ minutes	$\begin{aligned} & \text { b. } 9 a^{2}-4 a^{2}+13 a-3 a \quad \text { collect like terms } \\ & =(9-4) a^{2}+(13-3) a \quad \text { combine like terms } \\ & =(5) a^{2}+(10) a \\ & =5 a(a+2) \quad \text { factorise and divide each term by } 5 a \end{aligned}$

