

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-003) CODE A5 \& Theme: Numbers and Numeration (M-08-003) CODE A5 \\
\hline Lesson Title: Converting Fractions to Decimals \& Lesson Title: Converting Fractions to Decimals \\
\hline \begin{tabular}{l}
Convert the following fractions to decimal numbers: \\
1. \(8 \frac{17}{100}\) \\
2. \(\frac{7}{20}\)
\end{tabular} \& \begin{tabular}{l}
Answer: \\
1. \(8 \frac{17}{100}=\frac{817}{100}=8.17\) \\
2. \(\frac{7}{20}=\frac{35}{100}=0.35\)
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-08-004) CODE A6 \& Theme: Numbers and Numeration (M-08-004) CODE A6 \\
\hline Lesson Title: Comparing and Ordering a Mixture of Numbers \& Lesson Title: Comparing and Ordering a Mixture of Numbers \\
\hline What is a number line?

1 minute \& | Answer: |
| :--- |
| A number line is a straight line marked off in equal intervals to represent the relationship and the order of numbers. | \\

\hline Theme: Numbers and Numeration (M-08-004) CODE A7 \& Theme: Numbers and Numeration (M-08-004) CODE A7 \\
\hline Lesson Title: Comparing and Ordering a Mixture of Numbers \& Lesson Title: Comparing and Ordering a Mixture of Numbers \\
\hline Draw a number line that shows the fractions in thirds from 0 to 1 . \& Answer: \\
\hline Theme: Numbers and Numeration (M-08-004) CODE A8 \& Theme: Numbers and Numeration (M-08-004) CODE A8 \\
\hline Lesson Title: Comparing and Ordering a Mixture of Numbers \& Lesson Title: Comparing and Ordering a Mixture of Numbers \\

\hline Identify the number shown by the arrow on the number line. \& | Answer: |
| :--- |
| The number indicated by the arrow is 1.32 | \\

\hline
\end{tabular}

| Theme: Numbers and Numeration (M-08-004) CODE A9 | Theme: Numbers and Numeration (M-08-004) CODE A9 |
| :---: | :---: |
| Lesson Title: Comparing and Ordering a Mixture of Numbers | Lesson Title: Comparing and Ordering a Mixture of Numbers |
| Create a number line that represents these numbers in their correct order: $0.1, \quad 0.2, \quad 0.4, \quad 0.8, \quad 0.9, \quad 0.3,0.5,0.6, \quad 0.7, \quad 0,1$ | Answer: |
| Theme: Numbers and Numeration (M-08-005) CODE A10 | Theme: Numbers and Numeration (M-08-005) CODE A10 |
| Lesson Title: Locating a Mixture of Numbers on the Number Line | Lesson Title: Locating a Mixture of Numbers on the Number Line |
| Identify the number shown by the arrow: <br> 2 minutes | Answer: <br> Step 1. The number is between 0.1 and 0.2 . <br> Step 2. The scale is marked in hundredths. <br> The labelled numbers are tenths: $0.1,0.2,0.3$. <br> Each tenth is divided into 10 equal parts, which are hundredths. <br> Step 3. The value of the number is $\underline{0.17}$. <br> We say zero point one seven (not seventeen) |
| Theme: Numbers and Numeration (M-08-005) CODE A11 | Theme: Numbers and Numeration (M-08-005) CODE A11 |
| Lesson Title: Locating a Mixture of Numbers on the Number Line | Lesson Title: Locating a Mixture of Numbers on the Number Line |
| Identify the number shown with the arrow: <br> $11 / 2$ minutes | Answer: <br> Step 1. The number is between 2 and 4. <br> Step 2. The scale is marked in ones, but only the even integers are labelled. <br> Step 3. The value of the number is $\underline{3}$. |
| Theme: Numbers and Numeration (M-08-006) CODE A12 | Theme: Numbers and Numeration (M-08-006) CODE A12 |
| Lesson Title: Classification of Decimal Numbers | Lesson Title: Classification of Decimal Numbers |
| 1. What is a recurring decimal? <br> 2. What is a terminating decimal? | Answer: <br> 1. A recurring decimal is a decimal that does not have an end. <br> Example 0.2222... (We say zero point two two two ...) <br> 2. A terminating decimal is a decimal that has an end. Example 0.25 |


| Theme: Numbers and Numeration (M-08-006) CODE A13 | Theme: Numbers and Numeration (M-08-006) CODE A13 |
| :---: | :---: |
| Lesson Title: Classification of Decimal Numbers | Lesson Title: Classification of Decimal Numbers |
| Determine whether the following decimal numbers are recurring or terminating: <br> 1. 3.8261 <br> 2. 2.999... <br> 3. 9.9 | Answer: <br> 1. Terminating. <br> 2. Recurring. <br> 3. Recurring. |
| Theme: Numbers and Numeration (M-08-006) CODE A14 | Theme: Numbers and Numeration (M-08-006) CODE A14 |
| Lesson Title: Classification of Decimal Numbers | Lesson Title: Classification of Decimal Numbers |
| Write the following decimal numbers in their shortened notation: <br> 1. 1.5454545454... <br> 2. $0.666666 \ldots$ <br> 3. $0.123123123123 .$. | Answer: <br> 1. $1 . \overline{54}$ <br> 2. $0 . \overline{66}$ <br> 3. $0 . \overline{123}$ |
| Theme: Numbers and Numeration (M-08-007) CODE A15 | Theme: Numbers and Numeration (M-08-007) CODE A15 |
| Lesson Title: Rounding off Decimal Numbers to the Nearest Whole | Lesson Title: Rounding off Decimal Numbers to the Nearest Whole |
| Round off the following decimals to the nearest whole number. <br> 1. 13.29 <br> 2. 20.8 | Answer: <br> 1. We only consider the digit 2 after the decimal point. This is less than 5 , so we round down. Answer: 13 <br> 2. We only consider the digit 8 after the decimal point. This is greater than 5 , so we round up. Answer: 21 |
| Theme: Numbers and Numeration (M-08-008) CODE A16 | Theme: Numbers and Numeration (M-08-008) CODE A16 |
| Lesson Title: Rounding off Decimal Numbers to Stated Decimal | Lesson Title: Rounding off Decimal Numbers to Stated Decimal |
| Round off 11.2389 to: <br> 1. 1 decimal place <br> 2. 2 decimal places <br> 3. 3 decimal places | Answer: <br> 1. The digit in the 2nd decimal place is 3 , so we round down to 11.2 <br> 2. The digit in the 3rd decimal place is 8 , so we round up to 11.24 <br> 3. The digit in the 4th decimal place is 9 , so we round up to 11.239 |

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-011) CODE A17 \& Theme: Numbers and Numeration (M-08-011) CODE A17 \\
\hline Lesson Title: Adding and Subtracting Integers and Decimals \& Lesson Title: Adding and Subtracting Integers and Decimals \\
\hline \begin{tabular}{l}
Add or subtract the numbers: \\
1. \(215.98+125.2\) \\
2. \(1.5-0.9\) \\
3. \(2.25-1.81\)
\end{tabular} \& \begin{tabular}{l}
Answer: \\
1. \(215.98+125.2\) \\
Answer: 341.18 \\
2. 1.5-0.9 \\
Answer: 0.6 \\
3. \(2.25-1.81\) \\
Answer: 0.44
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-08-012) CODE A18 \& Theme: Numbers and Numeration (M-08-012) CODE A18 \\
\hline Lesson Title: Adding and Subtracting Fractions with Integers and Decimals \& Lesson Titte: Adding and Subtracting Fractions with Integers and Decimals \\
\hline \begin{tabular}{l}
Evaluate the following:
\[
4.5 \times 4 \div 0.25
\] \\
Hint: Convert the decimal numbers into fraction form
\end{tabular} \& Answer:
\[
\begin{array}{ll}
4 \frac{5}{10} \times 4 \div \frac{25}{100} \& \text { simplify fractions } \\
=4 \frac{1}{2} \times 4 \div \frac{1}{4} \& \text { change to improper fractions } \\
=\frac{9}{2} \times 4 \div \frac{1}{4} \& \text { BODMAS } \\
=72 \&
\end{array}
\] \\
\hline Theme: Numbers and Numeration (M-08-015) CODE A19 \& Theme: Numbers and Numeration (M-08-015) CODE A19 \\
\hline Lesson Title: Story Problems with Operations on Different Number \& Lesson Title: Story Problems with Operations on Different Number \\
\hline \begin{tabular}{l}
Solve the following story problem: \\
David had \(3 / 4\) cup of rice, and his sister gave him \(3 / 4\) cup more. \\
How much rice did he have in total?
\end{tabular} \& \begin{tabular}{l}
Answer: \\
Words like more and total tell us to add. \\
Identify the 2 numbers to be added: \(\frac{3}{4}\) and \(\frac{3}{4}\)
\[
\begin{aligned}
\& \frac{3}{4}+\frac{3}{4} \\
\& =\frac{(3+3)}{4} \\
\& =\frac{6}{4}=\frac{3}{2}
\end{aligned}
\] \\
Hint: Add numerators \\
David had \(\frac{3}{2}\) cups or \(1 \frac{1}{2}\) cups of rice in total.
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-08-016) CODE A20 \& Theme: Numbers and Numeration (M-08-016) CODE A20 \\
\hline Lesson Title: Review the Concept and Vocabulary of Factors and \& Lesson Title: Review the Concept and Vocabulary of Factors and \\
\hline What is a factor of a number?

$111 / 2$ minutes \& | Answer: |
| :--- |
| A factor is a number that can divide exactly into another number with no remainder. |
| For example, 6 divides into 12 two times, therefore 6 is a factor of 12. |
| Factors of 12 include 1, 2, 3, 6 and 12. | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-016) CODE A21 \& Theme: \(\quad\) Numbers and Numeration ( \(\mathrm{M}-08-016\) ) CODE A21 \\
\hline Lesson Title: Review the Concept and Vocabulary of Factors and \& Lesson Title: Review the Concept and Vocabulary of Factors and \\
\hline List the factors of 16.
3 minutes \& \begin{tabular}{l}
Answer: \\
The factors of 16 are all the numbers that divide it evenly. These are 1, 2, 4, 8 and 16. \\
Check by dividing 16 by each factor:
\[
\begin{aligned}
\& 16 \div 1=16 \\
\& 16 \div 2=8 \\
\& 16 \div 4=4 \\
\& 16 \div 8=2 \\
\& 16 \div 16=1
\end{aligned}
\]
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-08-017) CODE A22 \& Theme: Numbers and Numeration (M-08-017) CODE A22 \\
\hline Lesson Title: Review Prime and Composite Numbers \& Lesson Title: Review Prime and Composite Numbers \\
\hline What is a prime number?

1 minute \& | Answer: |
| :--- |
| A prime number is a number that is greater than 1 and cannot be divided evenly by any other number except 1 and itself. |
| Examples of prime numbers between 1 and 10 are $2,3,5,7$. | \\

\hline Theme: Numbers and Numeration (M-08-017) CODE A23 \& Theme: Numbers and Numeration (M-08-017) CODE A23 \\
\hline Lesson Title: Review Prime and Composite Numbers \& Lesson Title: Review Prime and Composite Numbers \\
\hline What is a composite number?

11 minute \& | Answer: |
| :--- |
| A composite number is any whole number other than 1 that is not a prime number, meaning it has factors other than 1 and the number itself. |
| Examples of composite numbers between 0 and 10 are $4,6,8,9,10$ | \\

\hline Theme: Numbers and Numeration (M-08-018) CODE A24 \& Theme: Numbers and Numeration (M-08-018) CODE A24 \\
\hline Lesson Title: Review Prime and Composite Numbers \& Lesson Title: Review Prime and Composite Numbers \\

\hline Identify prime and composite numbers between 5 and 15. \& | Answer: |
| :--- |
| Numbers between 5 and 15 are 6, $7,8,9,10,11,12,13,14$ |
| Prime numbers: 7, 11, 13 |
| Composite numbers: 6, 8, 9, 10, 12, 14 | \\

\hline 3 minutes \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-018) CODE A25 \& Theme: Numbers and Numeration (M-0-018) CODE A25 \\
\hline Lesson Title: Prime Factors of Whole Numbers \& Lesson Title: Prime Factors of Whole Numbers \\
\hline What are prime factors? \& \begin{tabular}{l}
Answer: \\
Prime factors are factors of a number that are also prime numbers. \\
For example, 3 and 5 are factors of 15 and they are also prime numbers.
\end{tabular} \\
\hline Theme: \(\quad\) Numbers and Numeration (M-087-018) CODE A26 \& Theme: Numbers and Numeration (M-08-018) CODE A26 \\
\hline Lesson Title: Prime Factors of Whole Numbers \& Lesson Title: Prime Factors of Whole Numbers \\
\hline Identify the prime factors of 20.

3 minutes \& | Answer: |
| :--- |
| First, list all the factors of 20 : $\quad 1,2,4,5,10,20$ |
| Identify whether each factor is also a prime number. In this list, only 2 and 5 are prime numbers. |
| Answer: The prime factors of 20 are 2 and 5. | \\

\hline Theme: Numbers and Numeration (M-08-019) CODE A27 \& Theme: Numbers and Numeration (M-08-019) CODE A27 \\
\hline Lesson Title: Calculating the Least Common Multiple (LCM) \& Lesson Title: Calculating the Least Common Multiple (LCM) \\
\hline Find the lowest common multiple (LCM) of 12 and 20.

44 minutes \& | Answer: |
| :--- |
| Step 1 Factor trees: |
| Step 2 Prime factors for 12 are 2, 2 and 3 Prime factors for 20 are 2,2 and 5. |
| The prime factor 2 occurs twice in 12 and twice in 20. |
| The prime factors 3 and 5 only occur once. |
| Prime factors to find LCM of 12 and 20: 2, 2, 3 and 5 |
| Step $32 \times 2 \times 3 \times 5=60$ |
| Answer: The LCM of 12 and 20 is 60 . | \\

\hline Theme: $\quad$ Numbers and Numeration (M-08-021) CODE A28 \& Theme: Numbers and Numeration (M-08-0201 CODE A28 \\
\hline Lesson Title: Index Notation \& Lesson Title: Index Notation \\
\hline Identify the base and the index in this number:

\[
3^{2}

\] \& | Answer: |
| :--- |
| 3 is the base of the number. |
| 2 is the index or power of the number. | \\

\hline
\end{tabular}

| Theme: Numbers and Numeration (M-08-021) CODE A29 | Theme: Numbers and Numeration (M-08-021) CODE A29 |
| :---: | :---: |
| Lesson Title: Index Notation | Lesson Title: Index Notation |
| Evaluate the following: <br> 1. $6^{3}$ <br> 2. $8^{1}$ | Answer: <br> 1. $6^{3}$ <br> Multiply 6 by itself 3 times $\begin{aligned} & =6 \times 6 \times 6 \\ & =36 \times 6 \end{aligned}$ <br> Answer: 216 <br> 2. $\begin{aligned} & 8^{1} \\ & =8 \end{aligned}$ <br> Multiply 8 by itself once <br> Answer: 8 |
| Theme: Numbers and Numeration (M-08-022) CODE A30 | Theme: Numbers and Numeration (M-08-022) CODE A30 |
| Lesson Title: Index Law 1: Multiplication of Indices | Lesson Title: Index Law 1: Multiplication of Indices |
| Simplify the following. Give the answer in index notation. $2^{8} \times 2^{5}$ <br> 2 minutes | Answer: $\begin{aligned} & 2^{8} \times 2^{5} \\ & =2^{8+5} \\ & =2^{13} \end{aligned}$ <br> Remember: <br> If the bases are the same, add the exponents. $a^{m} \times a^{n}=a^{m+n}$ |
| Theme: Numbers and Numeration (M-08-023) CODE A31 | Theme: Numbers and Numeration (M-08-023) CODE A31 |
| Lesson Title: Index Law 2: Division of Indices | Lesson Title: Division of Indices |
| Simplify the following: $3^{5} \div 3^{3}$ | Answer: $\begin{aligned} & 3^{5} \div 3^{3} \\ & =3^{5-3} \\ & =3^{2} \end{aligned}$ <br> Answer: 9 <br> Remember: <br> In division if the bases are the same, subtract the exponents. $a^{m} \div a^{n}=a^{m-n}$ |
| Theme: $\quad$ Numbers and Numeration (M-08-025) CODE A32 | Theme: Numbers and Numeration (M-08-025) CODE A32 |
| Lesson Title: Index Law 4: Powers of Indices | Lesson Title: Index Law 4: Powers of Indices |
| Simplify and leave the answer in index notation. $\left(2^{2}\right)^{3}$ | Answer: $\left(2^{2}\right)^{3}=2^{2 \times 3}=2^{6}$ <br> Remember: Multiply the powers together. |


| Theme: Numbers and Numeration (M-08-026) CODE A33 | Theme: Numbers and Numeration (M-08-026) CODE A33 |
| :---: | :---: |
| Lesson Title: Index Laws 5 and 6: Power of a Product and Quotient | Lesson Title: Index Laws 5 and 6: Power of a Product and Quotient |
| Simply the following: $(2 \times 3)^{2}$ | Answer: $\begin{aligned} & (2 \times 3)^{2} \\ & =2^{2} \times 3^{2} \\ & =4 \times 9 \\ & =36 \end{aligned}$ |
| Theme: Numbers and Numeration (M-08-027) CODE A34 | Theme: Numbers and Numeration (M-08-027) CODE A34 |
| Lesson Title: Application of the Laws of Indices | Lesson Title: Application of the Laws of Indices |
| Simplify the following. Leave your answer in index notation. $\left(2^{3}\right)^{4} \times 2^{5}$ <br> 4 minutes | Answer: $\begin{aligned} \left(2^{3}\right)^{4} \times 2^{5} & =2^{3 \times 4} \times 2^{5} \\ & =2^{12} \times 2^{5} \\ & =2^{12+5}=2^{17} \end{aligned}$ |
| Theme: Numbers and Numeration (M-08-028) CODE A35 | Theme: Numbers and Numeration (M-08-028) CODE A35 |
| Lesson Title: Indices with Negative Powers | Lesson Title: Indices with Negative Powers |
| Simplify and leave the answer with positive indices. <br> 1. $2^{-2}$ <br> 2. $23^{-41}$ | Answer: <br> 1. $2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$ <br> 2. $\begin{aligned} & 23^{-41} \\ & =\frac{1}{23^{41}} \end{aligned}$ <br> Remember: <br> Rewrite the index with a positive power $\left(a^{m}=\frac{1}{a^{m}}\right)$ |
| Theme: Numbers and Numeration (M-08-030) CODE A36 | Theme: Numbers and Numeration (M-08-030) CODE A36 |
| Lesson Title: Negative Powers and the Index Laws | Lesson Title: Negative Powers and the Index Laws |
| Simplify: $2^{4} \div 2^{-3} \times 2^{2}$ <br> Hint: Use BODMAS. | Answer: $\begin{aligned} & 2^{4} \div 2^{-3} \times 2^{2} \\ = & 2^{4} \div \frac{1}{2^{3}} \times 2^{2} \\ = & 2^{4-3} \times 2^{2} \\ = & 2^{1} \times 2^{2} \\ = & 2^{1+2}=2^{3} \end{aligned}$ <br> Remember: In BODMAS, work with division and multiplication together, from left to right. |

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-031) CODE A37 \& Theme: Numbers and Numeration (M-08-031) CODE A37 \\
\hline Lesson Title: Identifying the Percentage of a Given Quantity \& Lesson Title: Identifying the Percentage of a Given Quantity \\
\hline Define percentage.

1 minute \& | Answer: |
| :--- |
| A percentage is a number or ratio expressed as a fraction of 100 . It is often identified by using the sign "\%" |
| Example $30 \%=\frac{30}{100}$ | \\

\hline Theme: Numbers and Numeration (M-08-031) CODE A38 \& Theme: Numbers and Numeration (M-08-031) CODE A38 \\
\hline Lesson Title: Identifying the Percentage of a Given Quantity \& Lesson Title: Identifying the Percentage of a Given Quantity \\

\hline | Solve the following word problem: |
| :--- |
| Fatu bought a bag containing 150 oranges, but $10 \%$ were rotten. How many were rotten? |
| Hint: First express the percentage as a fraction. | \& | Answer: |
| :--- |
| Convert the percentage to a fraction $10 \%=\frac{10}{100}=\frac{1}{10}$ |
| Find $10 \%$ of 150 $\begin{aligned} & \frac{1}{10} \times 150 \\ & =\frac{150}{10} \\ & =15 \end{aligned}$ |
| Answer: 15 of the 150 oranges were rotten. | \\

\hline Theme: Everyday Arithmetic (M-08-032) CODE A39 \& Theme: Everyday Arithmetic (M-08-032) CODE A39 \\
\hline Lesson Title: Expressing One Quantity as a Percentage of Another \& Lesson Title: Expressing One Quantity as a Percentage of Another \\

\hline | Solve the following word problem: |
| :--- |
| During a Mathematics test lasting one hour, a student took nine minutes to answer one question. |
| What percentage of the test time was used to answer the question? |
| Hint: Convert hours into minutes | \& | Answer: |
| :--- |
| Convert $\quad 1$ hour $=60$ minutes |
| Write the given quantity ( 9 minutes) as a fraction of |
| one hour (60 minutes) $\frac{9}{60}$ |
| Multiply by $100 \%$ : $\frac{9}{60} \times 100 \%=15 \%$ |
| Answer: The percentage of the test time used to answer the question was 15\% | \\

\hline Theme: Numbers and Numeration (M-08-033) CODE A40 \& Theme: Numbers and Numeration (M-08-033) CODE A40 \\
\hline Lesson Title: Percentage increase \& Lesson Title: Percentage increase \\

\hline How do we know if we are looking for a percentage increase or a percentage decrease? \& | Answer: |
| :--- |
| When the new value is greater than the old value, we are calculating a percentage increase. |
| When the new value is less than the old value, we are calculating a percentage decrease. | \\

\hline
\end{tabular}

| Theme: Numbers and Numeration (M-08-033) CODE A41 | Theme: Numbers and Numeration (M-08-033) CODE A41 |
| :---: | :---: |
| Lesson Title: Percentage increase | Lesson Title: Percentage increase |
| What is the formula for finding the percentage increase or decrease? <br> 1 minute | Answer: $\text { Percentage change }=\frac{\text { change in quantity }}{\text { original quantity }} \times 100 \%$ |
| Theme: Numbers and Numeration (M-08-033) CODE A42 | Theme: $\quad$ Numbers and Numeration (M-08-033) CODE A42 |
| Lesson Title: Percentage increase | Lesson Title: Percentage increase |
| Solve the word problem: <br> A bag of rice cost le 150,000 and was increased to Le 210,000. Calculate the percentage increase. | Answer: $\begin{aligned} & \text { percentage increase }=\frac{210,000-150,000}{150,000} \times 100 \% \\ & \quad=\frac{60,000}{150,000} \times 100 \% \\ & \quad=40 \% \end{aligned}$ |
| Theme: Numbers and Numeration (M-08-033) CODE A43 | Theme: Numbers and Numeration (M-08-033) CODE A43 |
| Lesson Title: Percentage increase | Lesson Title: Percentage increase |
| Solve the word problem: <br> A man sells cassava in the market. One week he sold 200 bags and the next week he sold 240 bags. <br> Calculate the percentage increase. | Answer: $\begin{aligned} & \text { percentage increase }=\frac{240-200}{200} \times 100 \% \\ & \quad=\frac{4}{20} \times 100 \% \\ & \quad=20 \% \end{aligned}$ |
| Theme: Numbers and Numeration (M-08-035) CODE A44 | Theme: Numbers and Numeration (M-08-035) CODE A44 |
| Lesson Title: Applying Percentage Increase and decrease | Lesson Title: Applying Percentage Increase and decrease |
| You are given a quantity K and given the percentage increase or decrease $M$ on it. <br> Explain what steps you need to calculate the new quantity. | Answer: <br> 1. State the increase or decrease in percentage. $\mathrm{M} \%$ <br> 2. For percent increase, add the percentage to $100 \%$. For percent decrease, subtract the percentage from $100 \%$. $100 \% \pm \mathrm{M}$ <br> 3. Because it is percent, divide the answer by 100 . $\frac{100 \pm M}{100}$ <br> 4. Multiply the answer by the given number $K$ to give the new number. $\left(\frac{100 \pm \mathrm{M}}{100}\right) \times \mathrm{K}$ |


| Theme: Numbers and Numeration (M-08-035) CODE A45 | Theme: Numbers and Numeration (M-08-035) CODE A45 |
| :---: | :---: |
| Lesson Title: Applying Percentage Increase and decrease | Lesson Title: Applying Percentage Increase and decrease |
| Solve the following word problems: <br> 1. A messenger received a salary of $\mathrm{Le} 68,500$. She is promoted to a higher salary level and her salary increases by $14 \%$. Calculate her new salary. <br> 2. The number 600 is decreased by $35 \%$. Find the new number. | Answer: <br> 1. $\begin{aligned} \text { New salary } & =\frac{100+14}{100} \times \frac{68,500}{1} \\ & =\frac{114}{100} \times \frac{68,500}{1} \\ & =114 \times 685 \\ & =\text { Le } 78,090.00 \end{aligned}$ <br> 2. $\begin{aligned} \text { New number } & =\frac{100-35}{100} \times \frac{600}{1} \\ & =\frac{65}{100} \times \frac{600}{1} \\ & =65 \times 6 \\ & =390 \end{aligned}$ |
| Theme: Everyday Arithmetic (M-08-036) CODE A46 | Theme: Everyday Arithmetic (M-08-036) CODE A46 |
| Lesson Title: Introduction to Profit and Loss | Lesson Title: Introduction to Profit and Loss |
| Differentiate between a profit and a loss. $1112 \text { minutes }$ | Answer: <br> Profit: Money made after costs have been subtracted from sales. Profit = sales $\boldsymbol{-}$ cost <br> Loss: Money lost after costs have been subtracted from sales. Loss $=$ cost $\boldsymbol{-}$ sales |
| Theme: Everyday Arithmetic (M-08-036) CODE A47 | Theme: Everyday Arithmetic (M-08-036) CODE A47 |
| Lesson Title: Introduction to Profit and Loss | Lesson Title: Introduction to Profit and Loss |
| State the formulae for percent profit and percent loss. | Answer: $\begin{aligned} & \text { Percent profit }=\frac{\text { profit }}{\text { capital }} \times 100 \% \\ & \text { Percent loss }=\frac{\text { loss }}{\text { capital }} \times 100 \% \end{aligned}$ |
| Theme: Everyday Arithmetic (M-08-037) CODE A48 | Theme: Everyday Arithmelic (M-08-037) CODE A48 |
| Lesson Title: Calculating Profit | Lesson Title: Calculating Profit |
| Solve the following word problem: <br> A watermelon was bought for Le 1.00 and sold at Le 1.70 . <br> Calculate the percent profit. | Answer: <br> Profit $=$ sales - cost $\quad$ Sales: Le $1.70 \quad$ Costs: Le 1.00 <br> Profit: Sales - cost $=1.70-1.00=$ Le 0.70 <br> Calculate the percentage profit: $\begin{aligned} \text { Percent profit } & =\frac{\text { profit }}{\text { capital }} \times 100 \% \\ & =\frac{0.70}{1.00} \times 100 \% \\ & =\frac{70 \%}{1.00} \\ & =70 \% \end{aligned}$ |



| Theme: Numbers and Numeration (M-08-41) CODE A52 | Theme: Numbers and Numeration (M-08-41) CODE A52 |
| :--- | :--- |
| Lesson Title: Ratio | Lesson Title: Ratio |
| What is a ratio? | Answer: <br> A ratio is a way of comparing two or more quantities. <br> For example, if you compare the number of boys and girls in <br> your class, that would be a ratio. |
| $1 \frac{11 / 2}{}$ minutes |  |

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-08-41) CODE A53 \& Theme: Numbers and Numeration (M-08-41) CODE A53 \\
\hline Lesson Title: Ratio \& Lesson Title: Ratio \\
\hline \begin{tabular}{l}
Express the following ratios as fractions: \\
1. \(20: 35\) \\
2. \(200: 800\)
\end{tabular} \& \begin{tabular}{l}
Answer: \\
1.
\[
\begin{aligned}
20: 35 \& =\frac{20}{35} \\
\& =\frac{4}{7}
\end{aligned}
\] \\
2.
\[
\begin{aligned}
200: 800 \& =\frac{200}{800} \\
\& =\frac{2}{8} \\
\& =\frac{1}{4}
\end{aligned}
\]
\end{tabular} \\
\hline Theme: Everyday Arithmetic (M-08-42) CODE A54 \& Theme: Everyday Arithmetic (M-08-042) CODE A54 \\
\hline Lesson Title: Rate \& Lesson Title: Rate \\
\hline Define the term rate.

3 minutes \& | Answer: |
| :--- |
| A rate is a special ratio that compares two values with different units of measurement. |
| For example, Binta is paid Le 180000 per month at their job. The different quantities are time and money. | \\

\hline Theme: Everyday Arithmetic (M-08-42) CODE A55 \& Theme: Everyday Arithmetic (M-08-42) CODE A55 \\
\hline Lesson Title: Rate \& Lesson Title: Rate \\

\hline | Solve the following word problems: |
| :--- |
| 1. Fatu sat a mathematics exam. She solved 20 problems in 40 minutes. What is her rate in minutes per problem? |
| 2. A car needs 4 litres of petrol to travel 45 km . What is its rate of petrol consumption? | \& Answer:

$$
\text { 1. } \begin{aligned}
\text { Rate } & =\frac{\text { minutes }}{\text { number of problems }} \\
& =\frac{40}{20} \\
& =2 \text { minutes per problem }
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
\text { Rate } & =\frac{\text { kilometres }}{\text { litres }} \\
& =\frac{45}{4} \\
& =11.25 \text { kilometres per litre. }
\end{aligned}
$$ \\

\hline Theme: Everyday Arithmetic (M-08-044) CODE A56 \& Theme: Everyday Arithmetic (M-08-044) CODE A56 \\
\hline Lesson Title: Calculation of Unit Price \& Lesson Title: Calculation of Unit Price \\

\hline | Solve the following word problems: |
| :--- |
| 1. Bendu paid Le $80,000.00$ for 20 litres of petrol. What is the unit price for each litre of petrol? |
| 2. Juliet sells palm oil in large bottles that carry 5 litres. |
| She sells each bottle for Le 65,000.00. |
| What is the unit cost for each litre of palm oil? | \& | Answer: |
| :--- |
| 1. The rate for petrol that Bendu paid is $\frac{\text { Le } 80,000}{20 \text { Litres }}$ Simplify the fraction to find the unit price: $=\frac{\text { Le } 4,000}{1 \text { litre }}=\text { Le } 4,000.00 / \text { litre }$ |
| 2. The rate of Leones per litre is $\frac{\text { Le } 65,000}{5 \text { litres }}$ |
| Simplify the fraction to find the unit price. $\begin{aligned} & =\frac{\text { Le } 13,000}{1 \text { Litre }} \\ & =\text { Le } 13,000.00 / \text { litre } \end{aligned}$ | \\

\hline
\end{tabular}

| Theme: Everyday Arithmetic (M-08-045) CODE A57 | Theme: Everyday Arithmetic (M-08-045) CODE A57 |
| :---: | :---: |
| Lesson Titte: Making Comparisons with Unit Price | Lesson Title: Making Comparisons with Unit Price |
| Michael sells beans. <br> He sells 3 kg of beans for Le 42,000.00, and 5 kg of beans for Le 65,000.00. <br> Which option has the better unit price? | Answer: <br> Find the unit rate of for each option. That is, the price of 1 kg of beans. <br> Option 1: The rate for the first option is: $=\frac{\mathrm{Le} 42,000}{3 \mathrm{~kg}}$ $=\text { Le } 14,000.00 / \mathrm{kg}$ <br> Option 2: The rate for the second option is: $=\frac{\mathrm{Le} 65,000}{5 \mathrm{~kg}}$ $=\text { Le } 13,000.00 / \mathrm{kg}$ <br> Answer: The unit rate for the second option is lower. It is better to buy 5 kg of beans for Le 120,000.00. |
| Theme: Everyday Arithmetic (M-08-046) CODE A58 | Theme: Everyday Arithmetic (M-08-046) CODE A58 |
| Lesson Title: Direct Proportion | Lesson Title: Direct Proportion |
| Define the term proportion. <br> What is direct proportion? | Answer: <br> - A proportion is two ratios set equal to each other. For example, " $\frac{2}{4}=\frac{5}{10}$ is a proportion: " <br> - A direct proportion means that as one ratio increases, the other does too, at the same rate. As one ratio decreases, the other does as well, at the same rate. It can be Identified by symbol ( $\alpha$ ). |
| Theme: Everyday Arithmetic (M-08-046) CODE A59 | Theme: Everyday Arithmetic (M-08-046) CODE A59 |
| Lesson Title: Direct Proportion | Lesson Title: Direct Proportion |
| Consider the ratios $3: 12$ and $5: 20$. <br> a. Write the ratios as fractions. <br> b. What are the extremes and the means? <br> c. Is this a direct proportion? | Answer: <br> a. Fractions: $\frac{3}{12}$ and $\frac{5}{20}$ <br> b. Extremes: $3 \times 20=60$ <br> Means: $\quad 12 \times 5=60$ <br> c. This is a direct proportion because the cross products are equal. So $\frac{3}{12}=\frac{5}{20}$ |
| Theme: Everyday Arithmetic (M-08-047) CODE A60 | Theme: Everyday Arithmetic (M-08-047) CODE A60 |
| Lesson Title: Identifying Direct Proportions | Lesson Title: Identifying Direct Proportions |
| Write down the equation for direct proportion using the letters $\mathrm{x}, \mathrm{y}$ and k . | Answer: <br> direct proportion: $y=k x$ <br> Consequently: $\mathrm{k}=\frac{y}{x}$ |
| 1 minute |  |


| Theme: Everyday Arithmetic (M-07-047) CODE A61 | Theme: Everyday Arithmetic (M-08-047) CODE A61 |
| :---: | :---: |
| Lesson Title: Identifying Direct Proportions | Lesson Titte: Identifying Direct Proportions |
| $y$ and $x$ are directly proportional. <br> When $x=10, y=4$. <br> Find the value of the constant of proportionality, k . | Answer: <br> Substitute $x=10$ and $y=4$ into $y=k x$. $\begin{aligned} & y=k x \\ & 4=\mathrm{k} \times 10 \\ & k=\frac{4}{10} \\ & k=\frac{2}{5} \end{aligned}$ <br> The constant of proportionality is $k=\frac{2}{5}$ |
| Theme: Everyday Arithmetic (M-08-048) CODE A62 | Theme: Everyday Arithmetic (M-08-048) CODE A62 |
| Lesson Title: Solving Direct Proportions | Lesson Title: Solving Direct Proportions |
| Find the value of $b$ that completes the direct proportion: $\frac{1}{b}=\frac{7}{21}$ | Answer: <br> Cross multiply $21 \times 1=7 \times b$ <br> Simplify $21=7 b$ <br> Divide both sides by 7 $\begin{aligned} & \frac{21}{7}=b \frac{7}{7} \\ & 3=b \end{aligned}$ <br> The answer is $b=3$, and the complete proportion is $\frac{1}{3}=\frac{7}{21}$ |
| Theme: Everyday Arithmetic (M-08-050) CODE A63 | Theme: Everyday Arithmetic (M-08-050) CODE A63 |
| Lesson Title: Direct Proportion Story Problems | Lesson Title: Direct Proportion Story Problems |
| Solve the following word problem: <br> A woman sold 50 oranges in 4 hours. If she continues selling them at the same rate, how many can she sell in 6 hours? | Answer: <br> Using the ratio method: $\frac{50 \text { oranges }}{4 \text { hours }}=\frac{b}{6 \text { hours }}$ <br> where $\mathbf{b}$ is the number of oranges the woman can sell in 6 hours. $\begin{array}{ll} \text { Cross multiply } & 50 \times 6=4 \times b \\ \text { Simplify } & 300=4 b \\ \text { Divide both sides by } 4 & \frac{300}{4}=\frac{4 \times b}{4} \\ & 75=b \end{array}$ <br> Answer: The woman can sell 75 oranges in 6 hours. |
| Theme: Everyday Arithmetic (M-08-051) CODE A64 | Theme: Everyday Arithmetic (M-08-051) CODE A64 |
| Lesson Title: Indirect Proportion | Lesson Title: Indirect Proportion |
| Define an indirect proportion. | Answer: <br> Indirect proportion means that as one ratio goes up, the other goes down. The ratios move in opposite directions instead of in the same direction like a directly proportional relationship. |
| $11 / 2$ minutes |  |



