

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-07-056) CODE: B 17 \& Theme: Numbers and Numeration (M-07-056) CODE: B 18 \\
\hline Lesson Title: Introduction to integers \& Lesson Title: Introduction to integers \\
\hline \begin{tabular}{l}
Complete the following sentence: \\
All numbers greater than zero are \(\qquad\) , \\
and all numbers less than zero are \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
Determine whether each number is positive or negative: \\
(a) +7 \\
(b) -12 \\
(c) -6 \\
(d) 14 \\
(e) 0
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-07-057) CODE: B 19 \& Theme: Numbers and Numeration (M-07-057) CODE: B 20 \\
\hline Lesson Title: Positive and negative integers \& Lesson Title: Positive and negative integers \\
\hline \begin{tabular}{l}
In which direction do we find positive integers from zero? \\
\(11 / 2\) minutes
\end{tabular} \& \begin{tabular}{l}
In which direction do we find the negative integers from zero? \\
\(11 / 2\) minutes
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-07-057) CODE: B 21 \& Theme: Numbers and Numeration (M-07-057) CODE: B 22 \\
\hline Lesson Title: Positive and negative integers \& Lesson Title: Positive and negative integers \\
\hline Is zero a positive or a negative integer?

$111 / 2$ minutes \& | a. Write down the symbol for 'greater than'. |
| :--- |
| b. Write down the symbol for 'less than'. |
| $11 / 2$ minutes | \\

\hline Theme: \quad Numbers and Numeration (M-07-057) CODE: B 23 \& Theme: \quad Numbers and Numeration (M-07-057) CODE: B 24 \\
\hline Lesson Title: Positive and negative integers \& Lesson Title: Positive and negative integers \\

\hline | Complete the following sentence: |
| :--- |
| Numbers to the right on a number line are bigger than numbers to the \qquad . | \& | Explain why -10 is less than +10 , even though both numbers are the same distance from 0 . |
| :--- |
| 2 minutes | \\

\hline
\end{tabular}

Theme: Numbers and Numeration (M-07-062) CODE: B 33	Theme: Numbers and Numeration (M-07-063) CODE: B 34
Lesson Title: Multiplication of numbers using number line	Lesson Title: Multiplication of integers
Solve the following: (a) 2×3 (b) $2 \times(-3)$ (c) $(-2) \times(-3)$	Complete the following: positive \times positive $=$ \qquad negative \times negative $=$ \qquad positive \times negative $=$ \qquad negative \times positive $=$ \qquad
Theme: \quad Numbers and Numeration (M-07-063) CODE: B 35	Theme: Everyday Arithmetic (M-07-064) CODE: B 36
Lesson Title: Multiplication of integers	Lesson Title: Division of integers
Simplify the following: (a) $(-4) \times(+3)$ (b) $(-100) \times(-3)$ (c) $(+92) \times(-3)$	Complete the following: a. positive \div positive $=$ \qquad b. negative \div negative $=$ \qquad
Theme: Everyday Arithmetic (M-07-064) CODE: B 37	Theme: Everyday Arithmetic (M-07-065) CODE: B 38
Lesson Title: Division of integers	Lesson Title: Story problems on integers
Simplify the following: a) $(+28) \div(+4)$ b) $(-49) \div 7$ c) $(-1500) \div(-10)$ d) $(+550) \div(-11)$	What should we do in this problem? James has 28 mangos. If Mary has 10 mangos more than James, how many mangoes does Mary have?
Theme: Everyday Arithmetic (M-07-065) CODE: B 39	Theme: Everyday Arithmetic (M-07-065) CODE: B 40
Lesson Title: Story problems on integers	Lesson Title: Story problems on integers
What should we do in this problem? Tommy has 20 coins. If his brother has 4 fewer coins, how many coins does the brother have?	a. A bird is flying 8 m . above the sea and a fish is directly below the bird. If the fish is -12 m . under the sea, what is the distance between the bird and fish? b. The air temperature is $28^{\circ} \mathrm{C}$ and a box of frozen fish is $3^{\circ} \mathrm{C}$. What is the difference in temperature between the air and the frozen fish?

Theme: Everyday Arithmetic (M-07-066) CODE: B 41	Theme: Everyday Arithmetic (M-07-066)	CODE: B 42
Lesson Title: Simple proportion	Lesson Title: Simple proportion	
What do you understand by the term 'proportion'. $11 / 2$ minutes	What type of fractions are these: $\frac{1}{2}=\frac{5}{10}$	$11 / 2$ minutes
Theme: Everyday Arithmetic (M-07-066) CODE: B 43	Theme: Everyday Arithmetic (M-07-067)	CODE: B 44
Lesson Title: Simple proportion	Lesson Title: Simple interest	
Jane ran 9 meters in 5 seconds. a. How long will she take to run 27 meters? b. How many meters will she cover in 10 seconds?	a. Express 5% as a fraction in its lowest term. b. What is 2% of 500 ?	
Theme: Everyday Arithmetic (M-07-067) CODE: B 45	Theme: Everyday Arithmetic (M-07-067)	CODE: B 46
Lesson Title: Simple interest	Lesson Title: Simple interest	
What do you understand by the term 'principal'? $11 / 2$ minutes	Write down the symbols of the following words: a. Simple Interest b. Principal c. Rate d. Time (in years) e. Discount f. Commission	
Theme: Everyday Arithmetic (M-07-067) CODE: B 47	Theme: Everyday Arithmetic (M-07-067)	CODE: B 48
Lesson Title: Simple interest	Lesson Title: Simple interest	
What formula do we use to calculate the simple interest. $11 / 2$ minutes	a. What is the interest paid on Le2500 borrowed for 3 years at a rate of 5% per annum? b. Mary invested Le22,500 for 4 years at a rate of 7% per annum. What interest did she earn?	

\begin{tabular}{|c|c|}
\hline Theme: Everyday Arithmetic (M-07-068) CODE: B 49 \& Theme: Everyday Arithmetic (M-07-068) CODE: B 50 \\
\hline Lesson Title: Discount \& Lesson Title: Discount \\
\hline What formula do we use to calculate discount?
\[
11 / 2 \text { minutes }
\] \& \begin{tabular}{l}
a. Find the sale price for an item that has a price tag of Le100 and a discount rate of \(25 \%\). \\
b. A baker has a coupon that reads, 'Get \(\frac{1}{3}\) off Le900 bread.' What is the discount? What is the sale price of the bread?
\end{tabular} \\
\hline Theme: Everyday Arithmetic (M-07-069) CODE: B 51 \& Theme: Everyday Arithmetic (M-07-069) CODE: B 52 \\
\hline Lesson Title: Commission \& Lesson Title: Commission \\
\hline \begin{tabular}{l}
What do you understand by the term 'commission'? \\
\(11 / 2\) minutes
\end{tabular} \& \begin{tabular}{l}
What formula do we use to calculate commission? \\
\(11 / 2\) minutes
\end{tabular} \\
\hline Theme: Everyday Arithmetic (M-07-069) CODE: B 53 \& Theme: Everyday Arithmetic (M-07-070) CODE: B 54 \\
\hline Lesson Title: Commission \& Lesson Title: Tax \\
\hline \begin{tabular}{l}
Abass works as a salesperson in a jewellery shop. He is paid on \(5 \%\) commission on his sales. \\
One very busy day he made the following four sales: a ladies' watch for Le200,000, a diamond necklace for Le500,000, a pair of cufflinks for Le120,000 and a gold bracelet for Le300,000. \\
What was Abass' commission on his total sales?
\end{tabular} \& Define the term 'taxes'.

$111 / 2$ minutes \\
\hline Theme: Everyday Arithmetic (M-07-070) CODE: B 55 \& Theme: Everyday Arithmetic (M-07-070) CODE: B 56 \\
\hline Lesson Title: Tax \& Lesson Title: Tax \\
\hline What formula do we use to calculate sales tax?

1112 minutes \& | a. Joe is buying shoes at a boutique, where the sales tax is 3%. The shoes cost Le30, 000. |
| :--- |
| How much is the tax? |
| b. Moses buys a house for Le $4,000,000$ and pays a tax of 6\%. |
| What is the total cost of the house? | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-07-071) CODE: B 57 \& Theme: Measurement and Estimation (M-07-071) CODE: B 58 \\
\hline Lesson Title: Units of measurements \& Lesson Title: Units of measurements \\
\hline When might we need to measure volume?

$111 / 2$ minutes \& | When might we need to measure mass, or weight? |
| :--- |
| $11 / 2$ minutes | \\

\hline Theme: Measurement and Estimation (M-07-071) CODE: B 59 \& Theme: Measurement and Estimation (M-07-071) CODE: B 60 \\
\hline Lesson Title: Units of measurements \& Lesson Title: Units of measurements \\

\hline | Think of an example of a unit used to measure length. |
| :--- |
| 1 minute | \& What is mass?

$111 / 2$ minutes \\
\hline Theme: Measurement and Estimation (M-07-071) CODE: B 61 \& Theme: Measurement and Estimation (M-07-071) CODE: B 62 \\
\hline Lesson Title: Units of measurements \& Lesson Title: Units of measurements \\
\hline What is volume?

$111 / 2$ minutes \& | (i) List 3 items whose length can be measured. |
| :--- |
| (ii) List 3 items whose mass can be measured. |
| (iii) List 3 items whose volume can be measured. | \\

\hline Theme: Measurement and Estimation (M-07-072) CODE: B 63 \& Theme: Measurement and Estimation (M-07-071) CODE: B 64 \\
\hline Lesson Title: Conversion of length \& Lesson Title: Units of measurements \\

\hline | a. Which is longer: 1 metre or 1 kilometre? |
| :--- |
| b. Which is longer: 1 centimetre or 1 metre ? | \& | (i) | Name 2 units for measuring lengths |
| :--- | :--- |
| (ii) | Name 2 units for measuring mass |
| (iii) | Name 2 units for measuring volume | \\

\hline $11 / 2$ minutes \& 2 minutes \\
\hline
\end{tabular}

Theme: Measurement and Estimation (M-07-072) CODE: B 65	Theme: Measurement and Estimation (M-07-073) CODE: B 66
Lesson Title: Conversion of length	Lesson Title: Conversion of mass
a. Change 8243 mm to metres. Round your answer to one decimal place. b. Add $703 \mathrm{~cm}, 956 \mathrm{~cm}$ and 168 cm . Then, express your answer in metres. $31 / 2$ minutes	a. How many millimetres in 1 centimetre? b. What is 1 km in metres? c. How many centimetres in a metre?
Theme: Measurement and Estimation (M-07-073) CODE: B 67	Theme: Measurement and Estimation (M-07-073) CODE: B 68
Lesson Title: Conversion of mass	Lesson Title: Conversion of mass
a. Which is bigger: 1 gram or 1 kilogram? b. Which is smaller: 1 tonne or 1 milligram? $11 / 2$ minutes	a. Change 6215 mg to grams. Round your answer to 2 decimal places. b. Add $574 \mathrm{~g}, 603 \mathrm{~g}$, and 128 g . Give your answer in kilograms.
Theme: Measurement and Estimation (M-07-074) CODE: B 69	Theme: Measurement and Estimation (M-07-074) CODE: B 70
Lesson Title: Conversion of volume	Lesson Title: Conversion of volume
Which is bigger: 1 litre or 1 millilitre? $11 / 2 \text { minutes }$	What are some things we measure with litres? $11 / 2$ minutes
Theme: Measurement and Estimation (M-07-074) CODE: B 71	Theme: Measurement and Estimation (M-07-075) CODE: B 72
Lesson Title: Conversion of volume	Lesson Title: Review of plane shapes
a. Change 419 decilitres to litres. b. Add $34 \mathrm{ml}, 1,240 \mathrm{ml}$, and 829 ml . Give your answer in litres. Round to the nearest litre.	1. Why are squares and rectangle called quadrilaterals? 2. How many sides does a triangle have? 3. Name 4 types of triangles.

Theme: Measurement and Estimation (M-07-075) CODE: B 73	Theme: Measurement and Estimation (M-07-075) CODE: B 74
Lesson Title: Review of plane shapes	Lesson Title: Review of plane shapes
Draw the following shapes: Rectangle EFGH, Square QRST, and Triangle ABC. $31 / 2$ minutes	Draw the following shapes: a scalene triangle ABC , an equilateral triangle DEF , an isosceles triangle RST, and a right-angled triangle XYZ. 4 minutes
Theme: Measurement and Estimation (M-07-077) CODE: B 75	Theme: Measurement and Estimation (M-07-077) CODE: B 76
Lesson Title: Area of rectangles and squares	Lesson Title: Area of rectangles and squares
What is area? 1112 minutes	a. What is the longest side of a rectangle called? b. What is the shortest side of a rectangle called? $11 / 2$ minutes
Theme: Measurement and Estimation (M-07-077) CODE: B 77	Theme: Measurement and Estimation (M-07-077) CODE: B 78
Lesson Title: Area of rectangles and squares	Lesson Title: Area of rectangles and squares
a. What is the formula to calculate the area of a square? b. What is the formula to calculate the area of a rectangle? 2 minutes	Calculate the area of these two shapes:
Theme: Measurement and Estimation (M-07-078) CODE: B 79	Theme: Measurement and Estimation (M-07-078) CODE: B 80
Lesson Title: Area of triangles	Lesson Title: Area of triangles
Consider the following triangle: a. What is the base of this triangle? b. What is the height of this triangle?	What is the formula to calculate the area of a triangle? $11 / 2$ minutes

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-07-078) CODE: B 81 \& Theme: Measurement and Estimation (M-07-079) CODE: B 82 \\
\hline Lesson Title: Area of triangles \& Lesson Title: Perimeter story problems \\
\hline \begin{tabular}{l}
Find the area of this shape: \\
\(21 / 2\) minutes
\end{tabular} \& Label the following shapes: \\
\hline Theme: Measurement and Estimation (M-07-079) CODE: B 83 \& Theme: Measurement and Estimation (M-07-080) CODE: B 84 \\
\hline Lesson Title: Perimeter story problems \& Lesson Title: Area story problems \\
\hline \begin{tabular}{l}
Mr. Bangura wants to build a fence around his house. \\
His yard is 40 metres long and 30 metres wide. \\
How long will the fence be?
\end{tabular} \& \begin{tabular}{l}
A Farmer wants to find the area of his farm so that he can buy fertilizer for his crops. His farm is 150 m long and 80 m wide. \\
What is the area of his farm? \\
If one container of fertilizer covers 1000 square meters, how many containers of fertilizer will the farmer need?
\end{tabular} \\
\hline Theme: Measurement and Estimation (M-07-081) CODE: B 85 \& Theme: Measurement and Estimation (M-07-081) CODE: B 86 \\
\hline Lesson Title: Circles \& Lesson Title: Circles \\
\hline \begin{tabular}{l}
Explain the meaning of the following terms: \\
a. Centre \\
b. Circumference \\
c. Radius \\
d. Diameter
\end{tabular} \& \begin{tabular}{l}
a. Sketch a circle with radius 7 m . What is the diameter? \\
b. Sketch a circle with diameter 42 m . What is the radius?
\end{tabular} \\
\hline Theme: Measurement and Estimation (M-07-082) CODE: B 87 \& Theme: Measurement and Estimation (M-07-083) CODE: B 88 \\
\hline Lesson Title: Circumference of circles \& Lesson Title: Area of circles \\
\hline \begin{tabular}{l}
a. What is the circumference of a circle with radius 21 cm ? (Use \(\frac{22}{7}\) for the value of \(\pi\)). \\
b. What is the circumference of a circle with diameter 56 in? (Use \(\frac{22}{7}\) for the value of \(\pi\)).
\end{tabular} \& What is the formula to calculate the area of a circle?

$111 / 2$ minutes \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-07-083) CODE: B 89 \& Theme: Measurement and Estimation (M-07-084) CODE: B 90 \\
\hline Lesson Title: Area of circles \& Lesson Title: Problem solving with circles \\
\hline \begin{tabular}{l}
a. Find the area of a circle of radius 8 cm \\
b. Find the area of a circle of radius 12 cm
\end{tabular} \& What is circumference?

$11 / 2$ minutes \\
\hline Theme: Measurement and Estimation (M-07-084) CODE: B 91 \& Theme: Measurement and Estimation (M-07-084) CODE: B 92 \\
\hline Lesson Title: Problem solving with circles \& Lesson Title: Problem solving with circles \\
\hline What is a semi-circle?

$111 / 2$ minutes \& | Consider the following figure: |
| :--- |
| What is the radius of this semi-circle? |
| $11 / 2$ minutes | \\

\hline Theme: Measurement and Estimation (M-07-084) CODE: B 93 \& Theme: Measurement and Estimation (M-07-084) CODE: B 94 \\
\hline Lesson Title: Problem solving with circles \& Lesson Title: Problem solving with circles \\

\hline | Solve: |
| :--- |
| A semi-circle has a diameter of 28 cm . |
| What is the area? (use $\pi=\frac{22}{7}$) | \& | Calculate the area of the shape below (use $\pi=\frac{22}{7}$). |
| :--- |
| $41 / 2$ minutes | \\

\hline Theme: Measurement and Estimation (M-07-085) CODE: B 95 \& Theme: Measurement and Estimation (M-07-086) CODE: B 96 \\
\hline Lesson Title: Circle story problems \& Lesson Title: Volume of solids \\

\hline | a. A goat is tied to a peg in the ground. The rope is 3 m . long. What area of grass can the goat eat? |
| :--- |
| (Use $\pi=3.14$) |
| b. A circular mat has a radius of 2 m . Calculate the area of the mat. (Use $\pi=3.14$) | \& | a. Find the area of a rectangle with length 7 cm and width 5 cm |
| :--- |
| b. What does a square unit measure? | \\

\hline
\end{tabular}

Theme: Measurement and Estimation (M-07-086) CODE: B 97	Theme: Measurement and Estimation (M-07-087) CODE: B 98
Lesson Title: Volume of solids	Lesson Title: Volume of a cube
a. Draw a rectangular prism with height 5 m length 3 m and width $2 m$ b. What units will the volume be in?	a. State the formula of the volume of a rectangular solid. b. If the unit is feet, what will the unit for volume be?
Theme: Measurement and Estimation (M-07-087) CODE: B 99	Theme: Measurement and Estimation (M-07-087) CODE: B 100
Lesson Title: Volume of a cube	Lesson Title: Volume of a cube
Draw a cube of sides 5 cm and calculate its volume. 312 minutes	Fill in the blank spaces to show volume of a cube with sides of length 15 feet: V= \qquad x \qquad x \qquad $=$ \qquad ft^{3}
Theme: Measurement and Estimation (M-07-088) CODE: B 101	Theme: Measurement and Estimation (M-07-088) CODE: B 102
Lesson Title: Volume of a cuboids	Lesson Title: Volume of a cuboids
State the formula for the volume of a cuboid. $11 / 2$ minutes	a. Calculate the volume of the cuboid below: b. A cuboid measures 4 mm by 3 mm by 6 mm . Find the volume of the cuboid.
Theme: Measurement and Estimation (M-07-089) CODE: B 103	Theme: Measurement and Estimation (M-07-089) CODE: B 104
Lesson Title: Problem solving with volumes	Lesson Title: Problem solving with volumes
a. State the formula for finding the volume of cuboid. b. State the formula for finding the volume of a cube.	a. A box has a base with area $81 \mathrm{~cm}^{2}$. Calculate the volume of the box if it is 10 cm deep. b. A wooden cupboard is 10 cm high. The volume of wood used to make the cupboard is $1000 \mathrm{~cm}^{3}$. Calculate the area of the base of the wooden cupboard.

\begin{tabular}{|c|c|}
\hline Theme: Measurement and Estimation (M-07-090) CODE: B 105 \& Theme: Measurement and Estimation (M-07-090) CODE: B 106 \\
\hline Lesson Title: Volume story problems \& Lesson Title: Volume story problems \\
\hline \begin{tabular}{l}
a. What is 1 cubic unit? \\
b. What is volume?
\end{tabular} \& \begin{tabular}{l}
A water tank is 12 m high, 5 m long and 9 m wide. A solid metal box 7 m high, 4 m long and 8 m wide is sitting at the bottom of the tank. The tank is filled with water. \\
What is the shape of the water tank and solid metal?
\end{tabular} \\
\hline Theme: Measurement and Estimation (M-07-090) CODE: B 107 \& Theme: Geometry (M-07-091) CODE: B 108 \\
\hline Lesson Title: Volume story problems \& Lesson Title: Introduction to angles \\
\hline \begin{tabular}{l}
A sea turtle house at the zoo is made by connecting two large glass tanks. \\
The first glass tank is 6 m long, 4 m wide and 2 m high. The second glass tank is 8 m long, 9 m wide and 3 m high. \\
How many cubic meters of space do the sea turtles have in their house? \\
4 minutes
\end{tabular} \& What is an angle?

$11 / 2$ minutes \\
\hline Theme: Geometry (M-07-091) CODE: B 109 \& Theme: Geometry (M-07-092) CODE: B 110 \\
\hline Lesson Title: Introduction to angles \& Lesson Title: Right angles \\

\hline | A. Draw 3 angles: 1 obtuse, 1 right, and 1 acute angle. |
| :--- |
| B. Classify the following degrees into obtuse, right or acute angle: $\begin{array}{lllll} \text { i. } 11^{\circ} & \text { ii. } 91^{\circ} & \text { iii. } 89^{\circ} & \text { iv. } 90^{\circ} & \text { v. } 179^{\circ} \end{array}$ | \& | What are the units we use to measure angles? |
| :--- |
| 1 minute | \\

\hline Theme: Geometry (M-07-092) CODE: B 111 \& Theme: Geometry (M-07-093) CODE: B 112 \\
\hline Lesson Title: Right angles \& Lesson Title: Measurement of angles \\

\hline | Draw a square. |
| :--- |
| Measure each of its 4 angles. |
| Find the sum of the four angles of the square. | \& Draw an acute angle and an obtuse angle. Estimate the measure of each, then measure them with a protractor. \\

\hline
\end{tabular}

Theme: Geometry (M-07-094) CODE: B 113	Theme: Geometry (M-07-095) CODE: B 114
Lesson Title: Finding unknown angles in triangles	Lesson Title: Find unknown angles in composite shapes
Find the unknown angles in the diagrams: a)	Find the value or the lettered angles: $21 / 2$ minutes
Theme: Geometry (M-07-095) CODE: B 115	Theme: Geometry (M-07-096) CODE: B 116
Lesson Title: Find unknown angles in composite shapes	Lesson Title: Intr to complementary \& supplementary angles
Find the value or the lettered angles: $21 / 2$ minutes	Complete the following sentences: a. Angles that add up to 90 degrees are called \qquad b. Angles that add up to 180 degrees are called \qquad 2 minutes
Theme: Geometry (M-07-096) CODE: B 117	Theme: Geometry (M-07-097) CODE: B 118
Lesson Title: Intro to complementary \& supplementary angles	Lesson Title: Complimentary angles
Solve: i. $\quad 1^{\circ}+89^{\circ}$ ii. $\quad 60^{\circ}+120^{\circ}$ iii. $\quad 79^{\circ}+11^{\circ}$ iv. $\quad 45^{\circ}+45^{\circ}$ v. $171^{\circ}+9^{\circ}$ $31 / 2$ minutes	Find the value of a in the diagram below: 2 minutes
Theme: Geometry (M-07-097) CODE: B 119	Theme: Geometry (M-07-098) CODE: B 120
Lesson Title: Complimentary angles	Lesson Title: Supplementary angles
i. If m and 54° are complementary angles, find the value of angle m. ii. If y and 7° are complementary angles, find the value of angle y. $21 / 2$ minutes	i. If p and 3° are supplementary angles, find the value of angle p. ii. If s and 162° are supplementary angles, find the value of angle s. iii. Find the missing angle t in the diagram:

Theme: Geometry (M-07-099) CODE: B 121	Theme: Geometry (M-07-099) CODE: B 122
Lesson Title: Supplementary angles	Lesson Title: Supplementary angles
Find the values of the missing angles in the diagrams below: a) b)	Consider the diagram below and complete the following: a. $w+x=$ b. $z+y=$ c. $x+y=$ d. $\mathrm{z}+\mathrm{w}=$
Theme: Geometry (M-07-099) CODE: B 123	Theme: Geometry (M-07-099) CODE: B 124
Lesson Title: Supplementary angles	Lesson Title: Supplementary angles
Consider the following equation and find the value of x : $x+56^{\circ}=180^{\circ}$ $11 / 2$ minutes	Find the values of the missing angles in the diagram below: $31 / 2$ minutes
Theme: Geometry (M-07-100) CODE: B 125	Theme: Geometry (M-07-100) CODE: B 126
Lesson Title: Transversal of parallel lines	Lesson Title: Transversal of parallel lines
Complete the following sentences: a. Corresponding angles on parallel lines are \qquad b. Co-interior angles on parallel lines add up to \qquad c. Alternate angles on parallel lines are \qquad $21 / 2$ minutes	Find the values of the missing angles: $31 / 2$ minutes
Theme: Geometry (M-07-101) CODE: B 127	Theme: Geometry (M-07-102) CODE: B 128
Lesson Title: Transversal of parallel lines	Lesson Title: Construction of triangles
Draw a circle and label the following: a. Centre B b. Diameter $C D$ c. Two radii $B E$ and $B F$	Construct triangle $A B C$ such that : $\overline{A B}=5 \mathrm{~cm}, \overline{B C}=6 \mathrm{~cm} \text { and } \overline{A C}=7 \mathrm{~cm}$ $31 / 2$ minutes

Theme: Geometry (M-07-103) CODE: B 129	Theme: Geometry (M-07-104) CODE: B 130
Lesson Title: Construction of parallel lines	Lesson Title: Construction of perpendicular lines
Draw a vertical line $\overline{A B}$ Parallel to it, construct line $\overline{\boldsymbol{C D}}$ $31 / 2$ minutes	Draw a line segment $\quad \overline{A B}$ Construct a point \boldsymbol{C} on it Construct line $\overline{\boldsymbol{D E}}$ Perpendicular to $\overline{\boldsymbol{A B}}$
Theme: Geometry (M-07-105) CODE: B 131	
Lesson Title: Construction practise	
Draw a line segment $\overline{\mathbf{Q R}}$. Mark a point \mathbf{P} on it. Construct line $\overline{\boldsymbol{S T}}$ perpendicular to $\overline{Q R}$.	

