\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-07-001) CODE: A1 \& Theme: Numbers and Numeration (M-07-001) CODE: A1 \\
\hline Lesson Title: Concept and Vocabulary of Factors \& Lesson Title: Concept and Vocabulary of Factors \\
\hline What are factors?

1 minute \& | Answer: |
| :--- |
| Factors are numbers that can go into another number without a remainder. | \\

\hline Theme: Numbers and Numeration (M-07-001) CODE: A2 \& Theme: Numbers and Numeration (M-07-001) CODE: A2 \\
\hline Lesson Title: Concept and Vocabulary of Factors \& Lesson Title: Concept and Vocabulary of Factors \\

\hline | Look at this list of numbers: $0 ; 24 ; 48 ; 8 ; 13 ; 2 ; 40 ; 1 ; 14$. |
| :--- |
| Which numbers are factors of $24 ?$ | \& | Answer: |
| :--- |
| The factors of 24 are: 24 and 1 | \\

\hline Theme: Numbers and Numeration (M-07-001) CODE: A3 \& Theme: Numbers and Numeration (M-07-001) CODE: A3 \\
\hline Lesson Title: Concept and Vocabulary of Factors \& Lesson Title: Concept and Vocabulary of Factors \\

\hline | Find the factors of the following numbers: |
| :--- |
| i. $\quad 18$ |
| ii. $\quad 30$ |
| iii. $\quad 32$ | \& Answer:

$$
\begin{array}{ll}
\text { i } & 1 ; 2 ; 3 ; 6 ; 9 ; 18 \\
\text { ii } & 1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 30 \\
\text { iii } & 1 ; 2 ; 4 ; 8 ; 16 ; 32
\end{array}
$$ \\

\hline 4 minutes \& \\
\hline Theme: Numbers and Numeration (M-07-002) CODE: A4 \& Theme: \quad Numbers and Numeration (M-07-002) CODE: A4 \\
\hline Lesson Title: Multiples of Whole Numbers \& Lesson Title: Multiples of Whole Numbers \\
\hline \multirow[t]{2}{*}{What is a multiple?

$111 / 2$ minutes} \& | Answer: |
| :--- |
| A multiple of a given number can be divided exactly by that number; It is a number you get when you multiply a given number by any other whole number. | \\

\hline \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: \(\quad\) Numbers and Numeration (M-07-005) CODE: A13 \& Theme: Numbers and Numeration (M-07-005) CODE: A13 \\
\hline Lesson Title: Highest Common Factor (HCF) \& Lesson Title: Highest Common Factor (HCF) \\
\hline \begin{tabular}{l}
Use a factor tree to find the HCF of: \\
a.) \(\quad 14\) and 28 \\
b.) \(\quad 18\) and 30
\end{tabular} \& \begin{tabular}{l}
Answer: \\
(a). \\
(b).
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-07-006) CODE: A14 \& Theme: Numbers and Numeration (M-07-006) CODE: A14 \\
\hline Lesson Title: Common Multiples \& Lesson Title: Common Multiples \\
\hline Give the first five multiples of 5

1 minute \& | Answer: |
| :--- |
| The first five multiples of 5 are: $5,10,15,20,25$ | \\

\hline Theme: \quad Numbers and Numeration (M-07-006) CODE: A15 \& Theme: Numbers and Numeration (M-07-006) CODE: A15 \\
\hline Lesson Title: Common Multiples \& Lesson Title: Common Multiples \\

\hline List the first ten multiples of $\mathbf{3}$ and 5 . 3 minutes \& | Answer: |
| :--- |
| The first ten multiples of 3 and 5 are: |
| 3: $3,6,9,12,15,18,21,24,27,30$ |
| 5: $5,10,15,20,25,30,35,40,45,50$ | \\

\hline Theme: Numbers and Numeration (M-07-006) CODE: A16 \& Theme: Numbers and Numeration (M-07-006) CODE: A16 \\
\hline Lesson Title: Common Multiples \& Lesson Title: Common Multiples \\

\hline | a. Find the first 5 common multiples of 3 and 6 . |
| :--- |
| b. Find the first 3 common multiples of 6 and 9 . |
| 4 minutes | \& | Answer: |
| :--- |
| a: |
| 3: 3, 6, 9, (12) 15, (18) 21,(24) 27,(30 |
| 6: (6) (12) (18), (24), (30) |
| b: $\begin{aligned} & \text { 6: } 6,12,18,24,30,36,42,48,54 \\ & 9: \quad 9,18,27,36,45,54 \end{aligned}$ | \\

\hline
\end{tabular}

Theme: Numbers and Numeration (M-07-010) CODE: A21	Theme: Numbers and Numeration (M-07-010) CODE: A21
Lesson Title: Higher Powers of Whole Numbers	Lesson Title: Higher Powers of Whole Numbers
Simplify the following: (a) $6 \times 6 \times 6 \times 6 \times 6$ (b) $7 \times 7 \times 7 \times 7$ (c) $3 \times 3 \times 3 \times 3 \times 3$ Expand the following: (d) 2^{5} (e) 8^{4}	Answer: (a) 6^{5} (b) 7^{4} (c) 3^{5} (d) $2 \times 2 \times 2 \times 2 \times 2$ (e) $8 \times 8 \times 8 \times 8$
Theme: Numbers and Numeration (M-07-011) CODE: A22	Theme: Numbers and Numeration (M-07-011) CODE: A22
Lesson Title: Multiplying Two Indices	Lesson Title: Multiplying Two Indices
What is the value of the power and what is the value of the base in the expression below: 3^{4} 2 minutes	Answer: The power = 4 The base $=3$
Theme: Numbers and Numeration (M-07-011) CODE: A23	Theme: Numbers and Numeration (M-07-011) CODE: A23
Lesson Title: Multiplying Two Indices	Lesson Title: Multiplying Two Indices
Complete the following sentence: When multiplying two indices with the same base, \qquad	Answer: When multiplying two indices with the same base, simply add the powers.
Theme: Numbers and Numeration (M-07-011) CODE: A24	Theme: Numbers and Numeration (M-07-011) CODE: A24
Lesson Title: Multiplying Two Indices	Lesson Title: Multiplying Two Indices
Identify the Law of Indices in the following expression: $a^{m} \times a^{n}=a^{m+n}$	Answer: It is the first law of indices.

Theme: \quad Numbers and Numeration (M-07-011) CODE: A25	Theme: Numbers and Numeration (M-07-011) CODE: A25
Lesson Title: Multiplying Two Indices	Lesson Title: Multiplying Two Indices
Simplify the following. Leave your answer in index form: (a) $4^{2} \times 4$ (b) $2^{3} \times 2^{4}$	Answer: (a) $4^{2} \times 4=4^{2} \times 4^{1}=4^{2+1}=4^{3}$ (b) $2^{3} \times 2^{4}=2^{3+4}=2^{7}$
Theme: \quad Numbers and Numeration (M-07-012) CODE: A26	Theme: Numbers and Numeration (M-07-012) CODE: A26
Lesson Title: Dividing Two Indices	Lesson Title: Dividing Two Indices
Complete the following sentence: When we divide two indices with the same base, \qquad $11 / 2$ minutes	Answer: When we divide two indices with the same base, we subtract the powers to get the answer.
Theme: Numbers and Numeration (M-07-012) CODE: A27	Theme: Numbers and Numeration (M-07-012) CODE: A27
Lesson Title: Dividing Two Indices	Lesson Title: Dividing Two Indices
Identify the Law of Indices in the following expression: $a^{m} \div a^{n}=a^{m-n}$ $11 / 2$ minutes	Answer: It is the second law of indices.
Theme: Numbers and Numeration (M-07-012) CODE: A28	Theme: Numbers and Numeration (M-07-012) CODE: A28
Lesson Title: Dividing Two Indices	Lesson Title: Dividing Two Indices
Simplify: i) $\quad 2^{4} \div 2^{2}$ ii) $\frac{t^{6}}{t^{3}}$	Answer: i) $\quad 2^{4} \div 2^{2}=2^{4-2}=2^{2}$ ii) $\frac{t^{6}}{t^{3}}=t^{6} \div t^{3}=t^{6-3}=t^{3}$
3 minutes	

Theme: Numbers and Numeration (M-07-013) CODE: A29	Theme: Numbers and Numeration (M-07-013) CODE: A29
Lesson Title: Multiplication and Division of Indices	Lesson Title: Multiplication and Division of Indices
Simplify: (a) $\frac{3^{2} \times 3^{5}}{3^{4} \times 3}$ (b) $\frac{2^{5} \times 2^{4}}{2^{3} \times 2^{2}}$ (c) $\frac{6^{2} \times 6^{3}}{6^{4}}$	Answer: (a) ${\frac{3}{} 3^{2} \times 3^{5} \times 3^{1}}_{3^{2}}^{=\frac{3^{2+5}}{3^{4+1}}=\frac{3^{7}}{3^{5}}=3^{7-5}=3^{2} .{ }^{2}}$ (b) $\frac{2^{5} \times 2^{4}}{2^{3} \times 2^{2}}=\frac{2^{5+4}}{2^{8+2}}=\frac{2^{9}}{2^{5}}=2^{9-5}=2^{4}$ (c) $\frac{6^{2} \times 6^{8}}{6^{4}}=\frac{6^{2+3}}{6^{4}}=\frac{6^{5}}{6^{4}}=6^{5-4}=6^{1}=6$
Theme: Numbers and Numeration (M-07-014) CODE: A30	Theme: Numbers and Numeration (M-07-014) CODE: A30
Lesson Title: Introduction to Fractions	Lesson Title: Introduction to Fractions
Draw shapes to show the following fractions: (a) $\frac{1}{3}$ (b) $\frac{3}{8}$ (c) $\frac{5}{6}$	Answer: (a) (b) (c)
Theme: Numbers and Numeration (M-07-015) CODE: A31	Theme: Numbers and Numeration (M-07-015) CODE: A31
Lesson Title: Introduction to Fractions	Lesson Title: Introduction to Fractions
i) Which fraction is bigger $\frac{4}{5}$ or $\frac{4}{6}$? ii) Put this list of fractions in ascending order (smallest first): $\frac{3}{9} ; \frac{3}{11} ; \frac{3}{5} ; \frac{3}{7}$ iii) Put this list of fractions in descending order (largest first): $\frac{5}{6} ; \frac{5}{11} ; \frac{5}{8} ; \frac{5}{9}$ 4 minutes	Answer: i) $\frac{4}{5}$ ii) $\quad \frac{3}{11} ; \frac{3}{9} ; \frac{3}{7} ; \frac{3}{5}$ iii) $\frac{5}{6} ; \frac{5}{8} ; \frac{5}{9} ; \frac{5}{11}$
Theme: Numbers and Numeration (M-07-016) CODE: A32	Theme: Numbers and Numeration (M-07-016) CODE: A32
Lesson Title: Adding fractions with the same denominator	Lesson Title: Adding fractions with the same denominator
Write down the numerator and the denominator in the following fraction: $\frac{2}{13}$	Answer: The numerator is 2 . The denominator is 13 .

Theme: Numbers and Numeration (M-07-016) CODE: A33	Theme: Numbers and Numeration (M-07-016) CODE: A33
Lesson Title: Adding fractions with the same denominator	Lesson Title: Adding fractions with the same denominator
Complete the following sentence: When the fractions have the same denominator,	Answer: When the fractions have the same denominator, we add the numerators and keep the same denominator.
Theme: Numbers and Numeration (M-07-017) CODE: A34	Theme: \quad Numbers and Numeration (M-07-017) CODE: A34
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Complete the following sentence: A fraction in which the denominator is bigger than the numerator is known as a \qquad	Answer: A fraction in which the denominator is bigger than the numerator is known as a proper fraction.
Theme: Numbers and Numeration (M-07-017) CODE: A35	Theme: Numbers and Numeration (M-07-017) CODE: A35
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Solve the problems below: (i) $\frac{2}{7}+\frac{5}{7}$ (ii) $\frac{2}{9}+\frac{2}{9}$	Answer: (i) $\frac{2}{7}+\frac{5}{7}=\frac{2+5}{7}=\frac{7}{7}=1$ (ii) $\frac{2}{9}+\frac{2}{9}=\frac{2+2}{9}=\frac{4}{9}$
Theme: Numbers and Numeration (M-07-017) CODE: A36	Theme: \quad Numbers and Numeration (M-07-017) CODE: A36
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
My mother gave me $\frac{3}{8}$ of a pawpaw, and my father gave me $\frac{2}{8}$ of a pawpaw. How much pawpaw do I have in total?	Answer: $\frac{3}{8}+\frac{2}{8}=\frac{3+2}{8}=\frac{5}{8}$

Theme: Numbers and Numeration (M-07-017) CODE: A37	Theme: Numbers and Numeration (M-07-017) CODE: A37
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Complete the following sentences: a) To subtract fractions with different denominators, we need to find a \qquad b) To add fractions with different denominators, we need to find a \qquad	Answer: a) To subtract fractions with different denominators, we need to find a common denominator. b) To add fractions with different denominators, we need to find a common denominator.
Theme: Numbers and Numeration (M-07-017) CODE: A38	Theme: Numbers and Numeration (M-07-017) CODE: A38
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Complete the following sentence: A fraction in which the denominator is bigger than the numerator is a \qquad	Answer: A fraction in which the denominator is bigger than the numerator is a proper fraction.
Theme: Numbers and Numeration (M-07-017) CODE: A39	Theme: Numbers and Numeration (M-07-017) CODE: A39
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Complete the following sentence: A fraction in which the denominator is smaller than the numerator is known as an \qquad	Answer: A fraction in which the denominator is smaller than the numerator is known as an improper fraction.
Theme: Numbers and Numeration (M-07-017) CODE: A40	Theme: Numbers and Numeration (M-07-017) CODE: A40
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Change the following improper fraction into a mixed fraction: $\frac{31}{30}$ $11 / 2$ minutes	Answer: $\begin{aligned} & \frac{31}{30} \\ & =31 \div 30 \\ & =1 \frac{1}{30} \end{aligned}$

Theme: Numbers and Numeration (M-07-017) CODE: A41	Theme: Numbers and Numeration (M-07-017) CODE: A41
Lesson Title: Adding fractions with different denominators	Lesson Title: Adding fractions with different denominators
Solve the following problems: (i) $\frac{1}{4}+\frac{3}{5}$ (ii) $\frac{2}{5}+\frac{2}{3}$	Answer: (i) $\frac{1}{4}+\frac{3}{5}=\frac{5}{20}+\frac{12}{20}=\frac{5+12}{20}=\frac{17}{20}$ (ii) $\frac{2}{5}+\frac{2}{3}=\frac{6}{15}+\frac{10}{15}=\frac{6+10}{15}=\frac{16}{15}=1 \frac{1}{15}$
Theme: Numbers and Numeration (M-07-018) CODE: A42	Theme: Numbers and Numeration (M-07-018) CODE: A42
Lesson Title: Subtracting fractions with the same denominators	Lesson Title: Subtracting fractions with the same denominators
Solve the following problems: (a) (b) $\frac{6}{7}-\frac{4}{7}$ (c) $\frac{10}{11}-\frac{6}{11}$	Answer: (a) $\frac{3}{5}-\frac{1}{5}=\frac{2}{5}$ (b) $\frac{6}{7}-\frac{4}{7}=\frac{2}{7}$ (c) $\frac{10}{11}-\frac{6}{11}=\frac{4}{11}$)
Theme: Numbers and Numeration (M-07-019) CODE: A43	Theme: Numbers and Numeration (M-07-019) CODE: A43
Lesson Title: Subtracting fractions with different denominators	Lesson Title: Subtracting fractions with different denominators
Simplify: (i) $\frac{8}{9}-\frac{2}{3}$ (ii) A man shared $\frac{5}{6}$ of his money between his 2 sons. If the first son received $\frac{3}{4}$ of his total money, what fraction of his money did his second son receive? 4 minutes	Answer: (i) $\frac{8}{9}-\frac{2}{3}=\frac{8}{9}-\frac{6}{9}=\frac{8-6}{9}=\frac{2}{9}$ (ii) $\frac{5}{6}-\frac{3}{4}=\frac{10}{12}-\frac{9}{12}=\frac{10-9}{12}=\frac{1}{12}$
Theme: Numbers and Numeration (M-07-020) CODE: A44	Theme: \quad Numbers and Numeration (M-07-020) CODE: A44
Lesson Title: Multiplication of fractions	Lesson Title: Multiplication of fractions
Simplify: $\frac{1}{2} \times \frac{3}{8} \times \frac{2}{3}$	Answer: $\frac{1}{2} \times \frac{3}{8}=\frac{1 \times 3}{2 \times 8}=\frac{3}{16} \rightarrow \frac{3}{16} \times \frac{2}{3}=\frac{6}{48}=\frac{1}{8}$
3 minutes	

Theme: Numbers and Numeration (M-07-021) CODE: A45	Theme: \quad Numbers and Numeration (M-07-021) CODE: A45
Lesson Title: Division of fractions	Lesson Title: Division of fractions
Simplify: a. $\frac{1}{2} \div \frac{2}{3}$ b. $\frac{6}{7} \div \frac{5}{6}$	Answer: a. $\frac{1}{2} \div \frac{2}{3}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}$ b. $\frac{6}{7} \div \frac{5}{6}=\frac{6}{7} \times \frac{6}{5}=\frac{36}{35}=1 \frac{1}{35}$
Theme: Everyday Arithmetic (M-07-022) CODE: A46	Theme: Everyday Arithmetic (M-07-022) CODE: A46
Lesson Title: Story problems on the basic operations on fractions	Lesson Title: Story problems on the basic operations on fractions
Solve the problems below: (i) Marie uses $\frac{1}{4}$ of her money to buy rice, and $\frac{3}{8}$ to buy palm oil. What fraction of her money is left? (ii) Bendu wants to buy enough rice for her family's dinner. Each member of her family eats $\frac{3}{4}$ cup of rice, and there are 8 members of her family. How many cups should she buy? 5 minutes	Answer: (i) $\begin{aligned} & 1-\left(\frac{1}{4}+\frac{3}{8}\right)=1-\left(\frac{2}{8}+\frac{3}{8}\right)= \\ & 1-\frac{5}{8}=\frac{8}{8}-\frac{5}{8}=\frac{3}{8} \end{aligned}$ (ii) $\frac{3}{4} \times 8=\frac{3}{4} \times \frac{8}{1}=\frac{3 \times 8}{4 \times 1}=\frac{24}{4}=6$ cups
Theme: Numbers and Numeration (M-07-024) CODE: A47	Theme: Numbers and Numeration (M-07-024) CODE: A47
Lesson Title: Decimals to fractions	Lesson Title: Decimals to fractions
Express the following as fractions in their lowest terms: a. 5.32 b. 0.325 c. 0.66	Answer: (a) $5.32=5 \frac{32}{100}=5 \frac{8}{25}$ (b) $0.325=\frac{325}{1000}=\frac{13}{40}$ (c) $0.66=\frac{66}{100}=\frac{33}{50}$
Theme: \quad Numbers and Numeration (M-07-025) CODE: A48	Theme: \quad Numbers and Numeration (M-07-025) CODE: A48
Lesson Title: Fractions to decimals	Lesson Title: Fractions to decimals
Express the following fractions as decimals: a) $\frac{4}{5}$ b) $1 \frac{19}{100}$ c) $39 \frac{1}{2}$	Answer: (a) $\begin{gathered}\frac{4}{5}= \\ 5$$0 .$ $\begin{array}{c}4 \cdot \\ -4\end{array} \quad 0 \\ 0\end{gathered}=0.8$ (b) $1 \frac{19}{100}=1.19$ (c) $\begin{aligned} \frac{1}{2}\end{aligned}=\begin{array}{r}0.5 \\ 2 \\ \\ \hline\end{array} \begin{aligned} & 1.0\end{aligned} \quad 0.5 \rightarrow 39 \frac{1}{2}=39.5$

Theme:	Numbers and Numeration (M-07-026)	CODE: A49	Them	Numbers and Numeration (M-07-026)	CODE: A49
Lesson Title: Rounding off decimal numbers to whole numbers			Lesson Title: Rounding off decimal numbers to whole numbers		
In a mathematics test, Amadu and Fatmata were asked to round 36.5 to the nearest whole number. Amadu's answer was 36 while Fatmata's was 37. Which of them is correct? Give reasons.			Answer: Fatmata's answer was correct because 0.5 can be rounded up by adding 1 to 36 . This makes 36.5 become 37 when rounded to the nearest whole number.		
Theme:	Numbers and Numeration (M-07-027)	CODE: A50	Them	Numbers and Numeration (M-07-027)	CODE: A50
Lesson	e: Rounding off decimal numbers		Lesson Title: Rounding off decimal numbers		
Round to the number of decimal places given in brackets: (a) 7.263 (2) (b) 73.0448 (2) (c) 0.04168 (3) (d) 0.7208 (3)			Answer: (a) $7.263 \quad \rightarrow 7.26$ (b) $73.0448 \quad \rightarrow 73.04$ (c) $0.04168 \quad \rightarrow 0.042$ (d) $0.7208 \quad \rightarrow 0.0721$		
Theme:	Numbers and Numeration (M-07-028)	CODE: A51	Then	Numbers and Numeration (M-07-028)	CODE: A51
$\begin{aligned} & \text { Lessor } \\ & 10,10 \end{aligned}$	itle: Rounding off whole numbers and and 1000	cimals to nearest	Lesson Title: Rounding off whole numbers and decimals to nearest 10, 100 and 1000		
(a) Round 6309 to nearest 10 ; (b) Round 9672.64 to nearest 100 ; (c) Round 5085.12 to nearest 1000.			Answer: (a) $63(0) 9=6310$ (b) 9 (6) $72.64=9700.00$ or 9700 (c) (5) $085.12=5000.00$ or 5000.5		
Theme	Numbers and Numeration (M-07-029)	CODE: A52	Theme	Numbers and Numeration (M-07-029)	CODE: A52
Lesso by pow	itle: Multiplying and dividing whole n s of 10	bers and decimals	Lesson Title: Multiplying and dividing whole numbers and decimals by powers of 10		
Comp To mu we mo	the following sentence: ly or divide decimals and whole n the point to the \qquad	sy powers of 10, $11 / 2$ minutes	Answer: To multiply or divide decimals and whole numbers by powers of 10 , we move the point to the right for multiplication and to the left for division.		

\begin{tabular}{|c|c|}
\hline Theme: Everyday Arithmetic (M-07-032) CODE: A57 \& Theme: Everyday Arithmetic (M-07-032) CODE: A57 \\
\hline Lesson Title: Multiplying and dividing decimals \& Lesson Title: Multiplying and dividing decimals \\
\hline \begin{tabular}{l}
Solve: \\
i) \(\quad 1.341 \div 0.03\) \\
ii) \(\quad 0.24 \times 0.02\)
\end{tabular} \& \begin{tabular}{l}
Answer: \\
i) \(1.341 \div 0.03(1.341 \times 100) \div(0.03 \times 100)=134.1 \div 3=44.7\) \\
ii)
\end{tabular} \\
\hline Theme: Everyday Arithmetic (M-07-033) CODE: A58 \& Theme: Everyday Arithmetic (M-07-033) CODE: A58 \\
\hline Lesson Title: Order of operations (BODMAS) \& Lesson Title: Order of operations (BODMAS) \\
\hline What do the letters of BODMAS stand for?

$111 / 2$ minutes \& | Answer: |
| :--- |
| BODMAS stands for 'brackets of division, multiplication, addition and subtraction'. | \\

\hline Theme: Everyday Arithmetic (M-07-033) CODE: A59 \& Theme: Everyday Arithmetic (M-07-033) CODE: A59 \\
\hline Lesson Title: Order of operations (BODMAS) \& Lesson Title: Order of operations (BODMAS) \\

\hline | Simplify: |
| :--- |
| a. $5.1 \times(6.2-3)$ |
| b. $7 \times 2^{3} \div 4$ |
| c. $15 \div 3+4^{3}$ | \& | Answer: |
| :--- |
| a. $5.1 \times(6.2-3)=5.1 \times 3.2=16.32$ |
| b. $7 \times 2^{3} \div 4=7 \times 8 \div 4=7 \times 2=14$ |
| c. $15 \div 3+4^{3}=15 \div 3+64=5+64=69$ | \\

\hline Theme: Everyday Arithmetic (M-07-034) CODE: A60 \& Theme: Everyday Arithmetic (M-07-034) CODE: A60 \\
\hline Lesson Title: Estimation \& Lesson Title: Estimation \\

\hline | (a) Round 63,194 to nearest Thousands; |
| :--- |
| (b) Estimate $828+43$ to the nearest Tens place |
| (c) Estimate 23,489-2373 to the nearest Thousands place. | \& | Answer: |
| :--- |
| (a) 63,000 |
| (b) 870 |
| (c) 21,000 | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Everyday Arithmetic (M-07-035) CODE: A61 \& Theme: Everyday Arithmetic (M-07-035) CODE: A61 \\
\hline Lesson Title: Story problems with whole numbers and decimals \& Lesson Title: Story problems with whole numbers and decimals \\
\hline \begin{tabular}{l}
a) A trader has 500 mangoes. After selling some mangoes, the number reduced to 289. \\
How many mangoes were sold? \\
b) After recovering from illness, Mustapha tried to gain weight. For 7 weeks he was able to gain 0.4 kg . each week. \\
How much did he gain in total? \\
Round your answer to the nearest kilogram. \\
4 minutes
\end{tabular} \& \begin{tabular}{l}
Answer: \\
a) \(500-289=211\) mangoes; \\
b) \(7 \times 0.4 \mathrm{~kg} .=2.8 \mathrm{~kg} . \rightarrow 3 \mathrm{~kg}\).
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-07-036) CODE: A62 \& Theme: \(\quad\) Numbers and Numeration (M-07-036) CODE: A62 \\
\hline Lesson Title: Percentages \& Lesson Title: Percentages \\
\hline What do we mean by 'percent'?

11122 minutes \& | Answer: |
| :--- |
| Percent means per hundred, or part of 100 , or out of 100 . | \\

\hline Theme: Numbers and Numeration (M-07-036) CODE: A63 \& Theme: \quad Numbers and Numeration (M-07-036) CODE: A63 \\
\hline Lesson Title: Percentages \& Lesson Title: Percentages \\

\hline | i. A student scored 85 marks out of 100 on an exam. Express this as a percentage. |
| :--- |
| ii. There were 100 women in a meeting, but 25 of them left. What percentage of the women left the meeting? |
| iii. There are 100 pupils registered in a school, and 56 of them are girls. What percentage of the pupils are girls? What percentage are boys? | \& | Answer: |
| :--- |
| i. 85 out of $100=85 \%$ |
| ii. 25 out of $100=25 \%$ |
| iii. Girls: 56 out of $100=56 \%$ Boys: $100-56=44$ $\rightarrow 44$ out of $100=44 \%$ | \\

\hline Theme: Numbers and Numeration (M-07-037) CODE: A64 \& Theme: \quad Numbers and Numeration (M-07-037) CODE: A64 \\
\hline Lesson Title: Percentages as fractions and decimals \& Lesson Title: Percentages as fractions and decimals \\

\hline | Three friends divided a pawpaw. Michael ate 30%, Zainab ate 25%, and Juliette ate 45%. |
| :--- |
| i. Write each percentage as a fraction and simplify the fraction. Write the fraction as a decimal. |
| ii. Add all three fractions together, and add all three decimals together. | \& | Answer: $\text { i. } \begin{aligned} 30 \% & =\frac{30}{100}=\frac{3}{10}=0.30=0.325 \% \\ & =\frac{25}{100}=\frac{1}{4}=0.2545 \%=\frac{45}{100}=\frac{9}{20}=0.45 \end{aligned}$ |
| :--- |
| ii. $\frac{3}{10}+\frac{1}{4}+\frac{9}{20}=\frac{6+5+9}{20}=\frac{20}{20}=10.3+0.25+0.45=1.0$ | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Theme: Numbers and Numeration (M-07-038) CODE: A65 \& Theme: \(\quad\) Numbers and Numeration (M-07-038) CODE: A65 \\
\hline Lesson Title: Fractions and decimals to percentages \& Lesson Title: Fractions and decimals to percentages \\
\hline \begin{tabular}{l}
Express the following as a percentage: \\
i) \(\quad 0.65\) \\
ii) \(\frac{4}{5}\) \\
iii) 0.2 \\
\(31 / 2\) minutes
\end{tabular} \& \begin{tabular}{l}
Answer: \\
i) \(\quad 0.65=0.65 \times 100 \%=65 \%\) \\
ii) \(\frac{4}{5}=\frac{4 \times 100}{5}=\frac{400}{5}=80 \%\) \\
iii) \(0.2 \times 100 \%=20 \%\)
\end{tabular} \\
\hline Theme: \(\quad\) Numbers and Numeration (M-07-039) CODE: A66 \& Theme: \(\quad\) Numbers and Numeration (M-07-039) CODE: A66 \\
\hline Lesson Title: Identify the percentage of a given quantity \& Lesson Title: Identify the percentage of a given quantity \\
\hline \begin{tabular}{l}
i. Calculate \(22 \%\) of Le 60,000 . \\
ii. Alpha was given \(42 \%\) of Le \(150,000\). \\
Calculate the amount given to Alpha. \\
3 minutes
\end{tabular} \& \begin{tabular}{l}
Answer: \\
i. \(22 \%\) of Le \(60,000=\frac{22}{100} \times \frac{60,000}{1}=\) Le 13,200 \\
ii. \(42 \%\) of Le \(150,000=\frac{42}{100} \times \frac{150,000}{1}=\) Le 63,000
\end{tabular} \\
\hline Theme: Numbers and Numeration (M-07-040) CODE: A67 \& Theme: \(\quad\) Numbers and Numeration (M-07-040) CODE: A67 \\
\hline Lesson Title: Express one quantity as a percentage of another \& Lesson Title: Express one quantity as a percentage of another \\
\hline \begin{tabular}{l}
a) In a mathematics lesson, 5 pupils are absent from a class of 25 pupils. What percentage of the class is absent? \\
b) 7 out of every 10 people have watched a football match at the National Stadium. What is this as a percentage?
\end{tabular} \& \begin{tabular}{l}
Answer: \\
a. \(\frac{5}{25} \times \frac{100}{1}=\frac{500}{25}=20 \%\) \\
b. \(\frac{7}{10} \times \frac{100}{1}=\frac{700}{10}=70 \%\)
\end{tabular} \\
\hline Theme: \(\quad\) Numbers and Numeration (M-07-041) CODE: A68 \& Theme: \(\quad\) Numbers and Numeration (M-07-041) CODE: A68 \\
\hline Lesson Title: Percentage increase \& Lesson Title: Percentage increase \\
\hline What do we mean by 'increase'?

1 minute \& | Answer: |
| :--- |
| Increase means addition to a quantity. | \\

\hline
\end{tabular}

Theme: Numbers and Numeration (M-07-041) CODE: A69	Theme: Numbers and Numeration (M-07-041) CODE: A69
Lesson Title: Percentage increase	Lesson Title: Percentage increase
(i) A bag of rice cost le 150,000 , and was increased to le 210,000 . Calculate the percentage increase. (ii) A man sells cassava in the market. One week he sold 200 bags and the next week he sold 240 bags. Calculate the percentage increase. 3 minutes	Answer: (i) $\frac{60,000}{150,000} \times \frac{100 \%}{1}=40 \%$ (ii) $\frac{40}{200} \times \frac{100 \%}{1}=20 \%$
Theme: Numbers and Numeration (M-07-042) CODE: A70	Theme: Numbers and Numeration (M-07-042) CODE: A70
Lesson Title: Percentage decrease	Lesson Title: Percentage decrease
What is the formula for finding the percentage increase or decrease? $11 / 2$ minutes	Answer: $\frac{\text { change in quantity }}{\text { original quantity }} \times 100 \%$
Theme: Numbers and Numeration (M-07-042) CODE: A71	Theme: Numbers and Numeration (M-07-042) CODE: A71
Lesson Title: Percentage decrease	Lesson Title: Percentage decrease
i. A businesswoman sells her lappa for le 20,000 per yard, but she sold one yard to her friend for le 15,000 . Calculate the percentage decrease. ii. In one year, the number of people who own cell phones in one village increased from 40 people to 60 people. Calculate the percentage increase. 3 minutes	Answer: $\text { i. } \frac{5,000}{20,000} \times \frac{100 \%}{1}=25 \% ; \text { ii. } \frac{20}{40} \times \frac{100 \%}{1}=50 \%$
Theme: Numbers and Numeration (M-07-042) CODE: A72	Theme: Numbers and Numeration (M-07-042) CODE: A72
Lesson Title: Percentage decrease	Lesson Title: Percentage decrease
(i) There were 800 people living in a village in 2005. By 2015, the population had grown by 20%. What was the population in 2015 ? (ii) David had 400 DVDs for sale in his shop, but he sold 30% of them. How many DVDs remain in his shop? 4 minutes	Answer: (i) $100+20=120 \frac{120}{100} \times \frac{800}{1}=960$ (ii) $100-30=70 \frac{70}{100} \times \frac{400}{1}=280$ DVDs

Theme:	Numbers and Numeration (M-07-044)	CODE: A73	Theme:	Numbers and Numeration (M-07-044)	CODE: A73
Lesson Title: Applying percentages to problems with money			Lesson Title: Applying percentages to problems with money		
	i. Francis opened a new cour first day, his profit was L day, his profit was 25% profit the second day? ii. Juliet sells lappa in the sold it for le 15,000 per y of her rent increased and increase the price of her will be the new price per	y shop. On the , 000. The second What was his t. Before, she However, the cost wants to a by 15%. What ? 4 minutes	ii.	$100+15=115 \frac{115}{100} \times \frac{15,000}{1}=\operatorname{Le} 17,250$	
Theme:	Numbers and Numeration (M-07-045)	CODE: A74	Theme:	Numbers and Numeration (M-07-045)	CODE: A74
Lesson Title: Story problems with percentages			Lesson Title: Story problems with percentages		
	Abass gets 80\% correct in a test Calculate the number of questions wrong. A man bought a car for Le8,000,000 later at Le6,000,000. What was th in the value of the car?	questions. e test he got d sold it a year centage decrease 4 minutes	Answer a. b.	If Abass got 80% correct, then he ($100 \%-80 \%=20 \%$). The number of questions he got w $\frac{20}{100} \times \frac{20}{1}=\frac{400}{100}=4$ questions. Calculate the amount of the decre $6,000,000=$ Le2,000,000. Divid by the original quantity and multiply $\frac{2,000,000}{8,000,000} \times \frac{100}{1}=\frac{200}{8}=25 \%$.	0\% wrong is 8,000,000 - amount decrease $100:$

